Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T20:11:53.887Z Has data issue: false hasContentIssue false

Optical Diagnostic Studies in Plasmas and Plasma Processing

Published online by Cambridge University Press:  28 February 2011

V. M. Donnelly*
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J.07974
Get access

Abstract

Optical diagnostic probes have greatly increased our understanding of low pressure discharges used in etching and deposition processes for microelectronics fabrication.Optical emission induced by energetic electron impact excitation provides a qualitative determination of concentrations of a number of important atoms and small radicals.Rare-gas actinometry, combined with high resolution line-shape measurements can convert emission data into quantitative relative number densities, and provide information on mechanism of excited state formation.Emission from products of etching reactions gives insights into mechanisms and serves as an end-point indicator for many commercial processes.Laser induced fluorescence is a sensitive probe which is most useful for small radicals.Quantitative, relative ground-state number densities, internal energy distributions, translational energies and electric fields can be determined by this technique.When optical emission or laser induced fluorescence measurements are performed with spatial resolution and in-phase with respect to the applied field, additional insights are obtained on the dynamics of the discharge processes.Finally, infrared and visible-ultraviolet absorption spectroscopy can be used to measure absolute number densities.This technique also can provide spatial and temporal resolution.

This paper reviews and compares the various optical techniques used in plasma diagnostics with particular emphasis on studies of low pressure radio frequency discharges used in etching and deposition of thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Flamm, D.L., Donnelly, V., and Ibbotson, D.E., in VLSI Electronics Microstructure Sicience, Vol.8, Plasma Processing for VLSI, edited by Einspruch, N.G. and Brown, D.M. (Academics, Orlando FL, 1984), Chap.8.Google Scholar
2. Donnelly, V.M., Ibbotson, D.E., and Flamm, D.L., in Ion Beam Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelly, R. (Elsevier, Amsterdam, 1984), Chap.8.Google Scholar
3. Flamm, D.L., Donnelly, V.M., and Mucha, J.A., J.Appl.Phys, 52, 3633 (1981).Google Scholar
4. Ryan, K.R. and Plumb, I.C., Plasma Chemistry and Plasma Processing, 4, 141 (1984).Google Scholar
5. Danner, D.A. and Hess, D.W. J.Appl.Phys., 59, 940 (1986).Google Scholar
6. Coburn, J.W., Plasma Chemistry and Plasma Processing, 2, 1 (1982); H.F.Winters, J.Vac.Sci.Technol.B3, 9 (1985).Google Scholar
7. Harshbarger, W.R., Porter, R.A., Miller, T.A., and Norton, P., Applied Spectroscopy, 31, 201 (1977); C.J.Mogab, A.C.Adams, and D.L.Flamm, J.Appl.Phys.49, 3796 (1978).Google Scholar
8. Donnelly, V.M., Flamm, O.L., Dautremont-Smith, W.C., and Werder, D.J., J.Appl.Phys. 55, 242 (1984).Google Scholar
9. Gottscho, R.A. and Donnelly, V.M., J.Appl.Phys., 56, 245 (1984).Google Scholar
10. Donnelly, V.M., Flamm, D.L., and Bruce, R.H., J.Appl.Phys. 58, 2135 (1985).Google Scholar
11. Flamm, D.L. and Donnelly, V.M., J.Appl.Phys., 59, 1052 (1986).Google Scholar
12. Cappelli, A.L., Gottscho, R.A., and Miller, T.A., Plasma Chemistry and Plasma Processing, 5, 317 (1985).CrossRefGoogle Scholar
13. Benesch, W. and Li, E., Optics Letters 9, 338 (1984).Google Scholar
14. Donnelly, V.M. and Flamm, D.L., J.Appl.Phys. 51, 5273 (1980).Google Scholar
15. Flamm, D.L., Donnelly, V.M., and Mucha, J.A., J.Appl.Phys., 52, 3633 (1981).CrossRefGoogle Scholar
16. Donnelly, V.M. and Flamm, D.L., U.S.Patent 4,377,436, Mar.22, 1983.Google Scholar
17. Coburn, J.W. and Chen, M., J.Appl.Phys. 51, 3134 (1980).Google Scholar
18. d'Agostino, R., Cramarossa, F., DeBenedictus, S., and Ferraro, G., J.Appl.Phys. 52, 1259 (1981).Google Scholar
19. d'Agostino, R., Cramarossa, F., and DeBenedictus, S., Plasma Chem.Plasma Proc., 2, 213 (1982).CrossRefGoogle Scholar
20. Ibbotson, D.E., Flamm, D.L., and Donnelly, V.M., J.Appl.Phys. 54, 5974 (1983).Google Scholar
21. Hamasaki, T., Hirose, M., and Osaka, Y., Proc.7th ICVM, 1982, Tokyo, Japan, p.432.Google Scholar
22. Stanton, A.C. and Kolb, C.E., J.Chem.Phys., 72, 6637 (1980); G.A.Laguna and W.H.Beattie, Chem.Phys.Lett.88, 439 (1982).Google Scholar
23. Daqenais, M., Johns, J.W.C., and McKellar, A.R.W., Can.J.Phys. 54, 1438 (1976); D.B.Davis and D.K.Russell, Chem.Phys.Lett.67 440 (1979).Google Scholar
24. Wormhoudt, J., Stanton, A.C., Richards, A.D., and Sawin, H.H., to be published.Google Scholar
25. Gottscho, R.A., Davis, G.P., and Burton, R.H., J.Vac.Sci.Technol. A1, 622 (1983); Plasma Chem.Plasma Proc.3, 1983 (1983).Google Scholar
26. Moore, C.A., Davis, G.P., and Gottscho, R.A., Phys.Rev.Lett., 52, 538 (1984); R.A.Gottscho and M.L.Mandich, J.Vac.Sci.Technol.A3, 617 (1985).Google Scholar
27. Ninomiya, K., Suzuki, K., Nishimatsu, S., and Okada, O., 32nd American Vacuum Society Symposium, Houston, Texas, Nov.19–22, 1985, paper JSFrM8; J.Vac.Sci.Technol., in press, 1986.Google Scholar
28. Hargis, P.J. Jr and Kushner, M.J., Appl.Phys.Lett. 40, 779 (1982).CrossRefGoogle Scholar
29. Donnelly, V.M., Flamm, D.L., and Collins, G., J.Vac.Sci.Technol. 21, 817 (1982).Google Scholar
30. Gottscho, R.A., Burton, R.H., Flamm, D.L., Donnelly, V.M., and Davis, G.P., J.Appl.Phys. 55, 2707 (1984)Google Scholar
31. DiMauro, L.F., Gottscho, R.A. and Miller, T.A., J.Appl.Phys. 56, 21007 (1984).Google Scholar
32. Heaven, M., Miller, T.A., Freeman, R.R., White, J., Bokar, J., Chem.Phys.Lett., 86, 458 (1982).Google Scholar
33. J.E.Lawler, D.K.Doughty, and S.Salih Abs.no.K6, 37th Gaseous Electronics Conference, Univ.of Colorado, (Oct.9–12, 1984), published by the American Physical Society; Doughty, D.K., Salih, S., and Lawler, J.E., Appl.Phys.Lett. 103A, 41 (1984); D.K.Doughty and J.E.Lawler, Appl.Phys.Lett.45 611(1984).CrossRefGoogle Scholar
34. Ganguly, B.N. and Garscadden, A., Appl.Phys.Lett. 46, 540 (1985).Google Scholar
35. Hargis, P.J. Jr, Appl.Opt. 20 149 (1981).Google Scholar
36. Hargis, P., private communication, 1986.Google Scholar