Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T17:33:41.387Z Has data issue: false hasContentIssue false

Optical Characterization and Modeling of Sulfur Incorporated Nanocrystalline Carbon Thin Films Deposited By Hot Filament CVD

Published online by Cambridge University Press:  15 March 2011

S. Gupta
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PO Box 23343, PR00931, USA
B. R. Weiner
Affiliation:
Department of Chemistry, University of Puerto Rico, San Juan, PO Box 23346, PR00931, USA
G. Morell
Affiliation:
Dept. of Physical Science, University of Puerto Rico, San Juan, PO Box 23323, PR00931, USA
Get access

Abstract

Sulfur incorporated nanocrystalline carbon (n-C:S) thin films grown on molybdenum substrates by hot-filament chemical vapor deposition (HFCVD) using gas mixtures of methane, hydrogen and a range of hydrogen sulfide (H2S) concentrations are optically examined using Raman spectroscopy (RS) and ex situ spectroscopic phase modulated ellipsometry (SPME) from near IR to near UV (1.5-5.0 eV) obtaining their vibrational frequencies and pseudodielectric function, respectively. The ellipsometry data (<εr(E)>, <εi(E)>) were modeled using Bruggeman effective-medium theory (BEMT) and five parameters Forouhi and Bloomer (FB) dispersion Model. A simplified two-layer model consisting of a top layer comprising an aggregate mixture of sp3C+sp2C+void and a bulk layer (L2), defined as a dense amorphized FB-modeled material was found to simulate the data reasonably well. Through these simulations, it was possible to estimate the dielectric function of our n-C: S material, along with the optical bandgap (Eg), film thickness (d), and roughness layer (σ) as a function of [H2S]. The physical interpretation(s) of the modeling parameters obtained were discussed. The Raman and ellipsometry results indicate that the average size of nanocrystallites in the sulfur-incorporated carbon thin films becomes smaller with increasing H2S concentration, consistent with AFM measurements. The bandgap was found to decrease systematically with increasing H2S concentration, indicating the enhancement of midgap states and sp2 C network, in agreement with RS results. These results are compared to those obtained for the films grown without sulfur (n-C), in order to study the influence of sulfur addition to the CVD process. This analysis led to a correlation between the film microstructure and its electronic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angus, J. C., Koidl, P., Domitz, S., in: Plasma Deposited Thin Films, Mort, J., Jansen, F. (Eds.), CRC Press, Boca Raton, FL, 1986, p.89 and M. N. Yoder, in: Synthetic Diamond: Emerging CVD Science and Technology, K. E. Spear and J. P. Dismukes editors, (Wiley, NY, 1994), p.4.Google Scholar
2. Robertson, J., Adv. Phys. 35, 317 (1986).Google Scholar
3. Gupta, S., Weiner, B. R., Weiss, B. L. and Morell, G., Appl. Phys. Lett. 79, 3446 (2001) and references therein.Google Scholar
4. Mckenzie, D. R., Muller, D. A., Paithorpe, B. A., Phy. Rev. Lett. 67, 773 (1991); J. Hong, A. Goulet, and G. Turban, Thin Solid Films 352, 41 (1999).Google Scholar
5. Robertson, J., Philos. Mag. B 76, 335 (1997) and references therein.Google Scholar
6. Gruen, D., Ann. Rev. Mater. Sci. 29, 211 (1999).Google Scholar
7. Yin, Z., Akkerman, Z., Yang, B. X. and Smith, F. W., Diamond & Related Mat. 6, 153 (1997).Google Scholar
8. Savvides, N., E-MRS Meeting 17, 275 (1985); N. Savvides, J. Appl. Phys. 59, 4133 (1986).Google Scholar
9. Azzam, R. M. A. and Bashara, N. M., in Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).Google Scholar
10. Kalish, R., Reznik, A., Uzan-Saguy, C. and Cytermann, C., Appl. Phys. Lett. 76, 757 (2000)Google Scholar
11. Dandy, D. S., Thin Solid Films 381, 1 (2001).Google Scholar
12. Gamo, M. N., Xiao, C., Zhang, Y., Yasu, E., Kikucji, Y., Sakaguchi, I., Suzuki, T., Sato, Y. and Ando, T., Thin Solid Films 382, 113 (2001).Google Scholar
13. Okano, K., Koizumi, S., Silva, S. R. P., and Amartunga, G. A. J., Nature, 381, 140 (1996).Google Scholar
14. Robertson, J., Mater. Res. Soc. Symp. Proc. 509, 83 (1998); S. Gupta, B. L. Weiss, B. R. Weiner and G. Morell, Mater. Res. Soc. Symp. Proc. 638, (2001) (in press).Google Scholar
15. Forouhi, A. R. and Bloomer, I., Phys. Rev. B 34, 7018 (1986).Google Scholar
16. Marquardt, D. W., J. Soc. Indis. Appl. Math. 11, 431 (1963).Google Scholar
17. Gupta, S., Weiner, B. R. and Morell, G., Diamond and Related Materials, 10, 1968 (2001).Google Scholar
18. Hong, B., Lee, J., Collins, R. W., Kuang, Y., Drawl, W., Messier, R., Tsong, T. T. and Strausser, Y. F., Diamond and Related Materials, 6, 55 (1997).Google Scholar
19. Nemanich, R. J., Glass, J. T., Luckovsky, G. and Shroder, R. E., J. Vac. Sci. Technol. A 6, 1783 (1988). R. C. Hyer, M. Green, and S. C. Sharma, Phys. Rev. B 49, 14573 (1994).Google Scholar
20. Ferrari, A. C. and Robertson, J., Phys. Rev. B 61, 14 095 (2000).Google Scholar
21. Bhattacharyya, S., Walzer, K., Hietschold, H. and Richter, F., J. Appl. Phys. 89, 1619 (2001).Google Scholar
22. Haubner, R., Bohr, S. and Lux, B., Diamond and Related Materials 8, 171 (2000).Google Scholar
23. Robertson, J. and O'Reilly, E. P., Phys. Rev. B 35, 2946 (1987).Google Scholar
24. Bruggeman, D. A. G., Ann. Phys. Leipzig, 24, 636 (1935).Google Scholar
25. McGahan, W. A. and Wollam, J. A., Mater. Res. Soc. Symp.Proc. 349, 453 (1994) and references therein.Google Scholar
26. Amir, O., and Kalish, R., J. Appl. Phys. 70, 4958 (1991).Google Scholar