Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T06:26:33.547Z Has data issue: false hasContentIssue false

Optical and Structural Characterization of Li-doped CdS Nanoparticles

Published online by Cambridge University Press:  23 April 2013

U. Sandoval*
Affiliation:
Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Puebla, México.
M. E. Hernández Torres
Affiliation:
Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México.
J. M. Gracia Jimenez
Affiliation:
Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Puebla, México.
N. R. Silva González
Affiliation:
Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Puebla, México.
Get access

Abstract

CdS:Li nanoparticles were grown by the thermolysis method using a surfactant to control the nanoparticles growth and the passivity of the dangling bonds. The effect of the Li incorporation on the optical and structural properties of the CdS nanoparticles was studied by means of the optical transmission, photoluminescence, X-ray diffraction and HR-SEM&TEM techniques. The optical energy band gap lies in the interval from 2.7 to 3.6 eV. The photoluminescence spectra present a band with peak at 465 nm, which is indicative of the quantum confinement. The energy peak position (465 nm) is blue-shifted respect to the bulk material (512 nm). Then, one can infer that the energy band gap and the peak intensity vary according to the nominal lithium concentration in the growth solution. An average crystallite size of about 5 nm was estimated by the Brus equation and the Debye-Scherrer formula, and confirm by HR-SEM&TEM measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murray, C. B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
Alivisatos, A. P., Science 271, 933937 (1996).CrossRefGoogle Scholar
Nag, A., Sapra, S., Sen Gupta, S., Prakash, A., Ghangrekar, A., Periasamy, N., Sarma, D. D., Bull. Mater. Sci. Vol. 31, N° 3, 561568 (2008).CrossRefGoogle Scholar
Norris, David J., Efros, Alexander L., Erwin, Steven C., Science 319, 17761779 (2008).CrossRefGoogle Scholar
Joo, Jin, Bin Na, Hyon, Yu, Taekyung, Woon Kim, Young, Wu, Fanxin, Zhang, Jin Z., Hyeon, Taeghwan, J. Am. Chem. Soc. 125, 11100 (2003).CrossRefGoogle Scholar
Bhattacharya, Bhaskar, Tomar, Sandeep Kumar, Saxena, Amit, Lee, Jun Young, Park, Jung-Ki, Phys. Stat. Sol.(b) 246, N° 4, 832836 (2009).CrossRefGoogle Scholar
Banerjee, R., Jayakrishnan, R., Ayyub, P., J. Phys.: Condens. Matter 12, 1064710654 (2000).Google Scholar
Heron, N., Calabrese, J. C., Farneth, W. F., Wang, Y., Science 259, 1426 (1993).CrossRefGoogle Scholar
Maleki, M., Sasani Ghamsari, M., Mirdamadi, Sh., Ghasemzadeh, R., Semiconductor Physics, Quantum Electronics & Optoelectronics, Vol. 10, N° 1, 3032, (2007).Google Scholar
Artemyev, M. V., Gurinovich, L. I., Stupak, A. P. and Gaponenko, S. V., Phys. Stat. Sol.(b) 224, N° 1, 191194 (2001).3.0.CO;2-W>CrossRefGoogle Scholar
Nanda, J., Kuruvilla, Beena Annie, Sarma, D. D., Phys. Rev. B 59, N° 11, 74737479 (1999).CrossRefGoogle Scholar