Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T22:15:02.625Z Has data issue: false hasContentIssue false

Optical Absorption of Nitrogen Vacancy in Proton Irradiated AlxGa1-xN thin Films

Published online by Cambridge University Press:  21 March 2011

Qiaoying Zhou
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131;
M. O. Manasreh
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131;
M. Pophristic
Affiliation:
EMCORE Corporation, 394 Elizabeth Ave, Somerset, NJ 08873;
Ian T. Ferguson
Affiliation:
EMCORE Corporation, 394 Elizabeth Ave, Somerset, NJ 08873;
B. D. Weaver
Affiliation:
Naval Research Lab, 4555 Overlook Ave, SW, Washington, DC 20375.
Get access

Abstract

Optical absorption measurements were used to investigate deep defects in proton irradiated doped and undoped AlGaN thin films grown on sapphire substrates. Several samples were proton irradiated with energies ranging between 10 keV and 1 MeV. In certain samples, multiple-energy ion implantation was found necessary to produce a defect, which is responsible for the absorption band observed at 4.61 eV with a shoulder at around 4.10 eV in Al0.6Ga0.4N. Furnace thermal annealing of the irradiated samples show that this absorption band starts to anneal out at temperature as low as 200 oC. A combined isochronal and isothermal annealing in the temperature range of 200- 350°C shows that the activation energy (enthalpy associated with the migration process) of this defect is approximately 0.41 eV. This leads us to conclude that this absorption band is due to a N-vacancy related defect. It is observed that the peak position energy of the absorption band due to this defect is shifted depending on the Al mole fraction in good agreement with the theoretical predictions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Hopler, R., Dimitrov, R., O.Ambacher, and Stutzmann, M., J. Appl. Phys. 82, 5090 (1997)Google Scholar
2.Tomasz Ochalski, J., Gil, Bernard, and Lefebvre, Pierre, Appl. Phys. Lett. 74, 3353 (1999).Google Scholar
3. Hofmann, D. M., Kovalev, D., Steude, G., Meyer, B. K., Hoffmann, A., Eckey, L., Heitz, R., Detchprom, T., Amano, H., Akasaki, I., Phys. Rev. B52 16702 (1995)Google Scholar
4. Feng, M. S., Chen, H. N., Chen, Y. F., Lee, M. C., J. Appl. Phys. 82 899 (1997)Google Scholar
5. Balagurov, L., Chong, P. J., Appl. Phys. Lett., 68, 43 (1996)Google Scholar
6. Tansley, T. L. and Egan, R. J., Phy. Rev. B45, 10942 (1992)10.1103/PhysRevB.45.10942Google Scholar
7. Jenkins, D. W. and Dow, J. D., Phy. Rev. B39, 3317 (1989)Google Scholar
8. Yoshida, S., Misawa, S., and Gonda, S., J. Appl. Phys. 53, 6844 (1982).Google Scholar
9. Ochalski, T. J., Gil, B., Lefebvre, P., Grandjean, N., Leroux, M., Massies, J., Nakamura, S., and Morkoc, H., Appl. Phys. Lett. 74, 3353 (1999)Google Scholar
10. Lee, S. R., Wright, A. F., Crawford, M. H., Petersen, G. A., Han, J., and Biefeld, R. M., Appl. Phys. Lett. 74, 3344 (1999).Google Scholar
11. Koide, Y., Itoh, H., Khan, M. R. H., Hiramatu, K., Sawaki, N., and Akasaki, I., J. Appl. Phys. 61, 4540 (1987).Google Scholar
12. Angerer, H., Brunner, D., Freudenberg, F., Ambacher, O., Stutzmann, M., Hopler, R., Metzger, T., Born, E., Dollinger, G., Bergmaier, A., Karsch, S., and Korner, H.-J., Appl. Phys. Lett. 71, 1504 (1997).Google Scholar
13. Lee, S. R., Wright, A. F., Crawford, M. H., Petersen, G. A., Han, J., and Biefeld, R. M., Appl. Phys. Lett. 74, 3344 (1999), and references therein.Google Scholar
14. Boguslawski, P., Briggs, E. L., and Bernholc, J., Phys. Rev. B 51, 17255 (1995).Google Scholar
15. Wright, A. F., Furthmüller, J., Appl. Phys. Lett. 72, 3467 (1998).Google Scholar
16. Jenkins, D. W. and Dow, J. D., Phys. Rev. B 39, 3317 (1989).Google Scholar
17. Jenkin, D. W., Dow, J. D. and Tsai, M.-H., J. Appl. Phys. 72, 4130 (1992).Google Scholar
18. Manasreh, M. O., series editor, Optoelectronic Properties of Semiconductors and Superlattices, Vol. 7, GaN and Related Materials II Google Scholar
19. Watts, R. K., Point Defects in Crystals (Wiley, New York, 1977), Chap. 3, P. 75; C. Klick and J. H.Schulman, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1975), Vol. 5, P. 97.Google Scholar
20. Carlone, C., Lakin, K. M., and Shanks, H. R., J. Appl. Phys. 55, 4010 (1984).Google Scholar
21. Hellwege, K. H., editor in chief, “Numerical Data and Functional Relationships in Science and Technology”, Vol. 17, Semiconductors.Google Scholar