Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T19:02:13.615Z Has data issue: false hasContentIssue false

On the Forward Conduction Mechanisms in SiC P-N Junctions

Published online by Cambridge University Press:  21 February 2011

Lourdes Pelaz
Affiliation:
Universidad de Valladolid, Departamento de Electricidad y Electrónica, Facultad de Ciencias, E-47011 Valladolid, Spain
J. Vicente
Affiliation:
Universidad de Valladolid, Departamento de Electricidad y Electrónica, Facultad de Ciencias, E-47011 Valladolid, Spain
M. Jaraiz
Affiliation:
Universidad de Valladolid, Departamento de Electricidad y Electrónica, Facultad de Ciencias, E-47011 Valladolid, Spain
L. Bailon
Affiliation:
Universidad de Valladolid, Departamento de Electricidad y Electrónica, Facultad de Ciencias, E-47011 Valladolid, Spain
J. Barbolla
Affiliation:
Universidad de Valladolid, Departamento de Electricidad y Electrónica, Facultad de Ciencias, E-47011 Valladolid, Spain
Get access

Extract

ABSTRACT:In SiC junctions, it is usual to find the ideality factor n=2 (or slightly higher) in 6H-SiC and n>2 and temperature dependent for 3C-SiC. However, the recombination current yields an ideality factor no higher than 2. This value can be slightly increased by considering the Poole-Frenkel effect (PFE), so that the 6H-SiC junction characteristics can be properly fitted. On the other hand, 3C-SiC junction characteristics, which are quite different from the ideal ones, cannot be satisfactorily explained on the basis of this model and the multitunnel capture-emission mechanism is proposed as the responsible for this behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Landolf-BÖrnstein, , Physics of Group IV Elements and III-V compounds (Springer-Verlag, Berlin, 1982), p. 132.Google Scholar
2. Davis, R.F., Palmour, J.W. and Edmond, J.A., Mat. Res. Soc. Symp. Proc. 162, 463 (1990).Google Scholar
3. Sze, S.M., Physics of Semiconductor Devices, 2nd. ed. (John Wiley & Sons, New York, 1981) p. 92.Google Scholar
4. Frenkel, J., Phys. Rev. 54, 657 (1938).Google Scholar
5. MEDICI, Technology Modeling Associates, Inc., 1991.Google Scholar
6. Edmond, J.A., Waltz, D.G., Brueckner, S., Kong, H., Palmour, J.W. and Carter, C.H. Jr, Proc. 1st. Int. Hi. Temp. Electron. Conf., 500 (1991).Google Scholar
7. Edmond, J.A., Das, K. and Davis, R.F., J. Appl. Phys. 63, 922 (1988).Google Scholar
8. Kim, H.J., Davis, R.F., Cox, X.B. and Linton, R.W., J. Electrochem. Soc. 134, 2269 (1987).Google Scholar
9. Stecki, A.J. and Li, J.P., IEEE Trans. Electron Devices 39, 64 (1992).Google Scholar
10. Pelaz, L., Orantes, J.L., Enríquez, L., Bailón, L. and Barbolla, J., (to be published).Google Scholar
11. Suzuki, A., Uemoto, A., Shigeta, M., Furukawa, K. and Nakajima, S., Extended Abstracts of the 18th Conference on Solid Stade Devices and Materials, 101 (1986).Google Scholar
12. Neudeck, P.G., Larkin, D.J., Starr, J.E., Powell, J.A., Salupo, C.S. and Matus, L.G., IEEE Electron Device Letters 14, 136 (1993).Google Scholar
13. Kane, E.O., Phys, J.. Chem. Solids 12, 181 (1959).Google Scholar
14. Matsuura, H., Okuno, T., Okushi, H. and Tanaka, K., J. Appl. Phys. 55, 1012 (1984).Google Scholar
15. Jepps, N.E. and Page, T.F., Progress in Crystal Growth and Characterization 7, 259 (1983).Google Scholar