Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T23:12:32.116Z Has data issue: false hasContentIssue false

On the Composition and Structure of Nanoprecipitates in Irradiated Pressure Vessel Steels

Published online by Cambridge University Press:  15 February 2011

G. R. Odette
Affiliation:
University of California Santa Barbara, Santa Barbara, CA 93106, odette@engineering.ucsb.edu
C. L. Liu
Affiliation:
University of California Santa Barbara, Santa Barbara, CA 93106, odette@engineering.ucsb.edu
B. D. Wirth
Affiliation:
University of California Santa Barbara, Santa Barbara, CA 93106, odette@engineering.ucsb.edu
Get access

Abstract

Nanoscale Cu rich precipitates (CRPs) are widely believed to be the dominant hardening feature resulting in severe embrittlement in irradiated reactor pressure vessel (RPV) steels. However, this view has recently been challenged by interpretations of atom probe field ion microscopy (APFIM) measurements that describe the dominant nanofeatures as dilute solute atmospheres (DSAs). The practical impact of these differing views is very significant. This work compares and contrasts the CRP versus DSA descriptions to a wide variety of pertinent data. Mechanical property trends as well as small angle neutron scattering (SANS) and field emission scanning transmission electron microscopy (FEGSTEM) measurements support the presence of CRPs. CRPs are also consistent with the fundamental thermodynamic and kinetic laws. However, standard theory cannot provide the atomic level resolution needed to fully understand the nanofeatures. Therefore, a new Lattice Monte Carlo (LMC) atomistic method is used to simulate the complex chemical structures of the CRPs. The LMC method unifies the SANS/FEGSTEM and APFIM data within a well founded physical framework.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Odette, G. R., Neutron Irradiation Effects in Reactor Pressure Vessel Steels and Weldments, IAEA Technical Report Series, Vienna (in press).Google Scholar
2. Odette, G. R. and Lucas, G. E., “Recent Progress in Understanding Reactor Pressure Vessel Embrittlement”, J. Nuc. Mat., (in press).Google Scholar
3. Odette, G. R., MRS Soc. Symp. Proc., 373 (1995) 137.Google Scholar
4. Odette, G. R. and Lucas, G. E., ASTM-STP909, American Society for Testing and Materials, Philadelphia, PA (1986) 206.Google Scholar
5. Williams, T. J. and Phythian, W. J., ASTM-STP1270, American Society for Testing and Materials, Philadelphia, PA (1996), 191.Google Scholar
6. Fisher, S. B. and Buswell, J. T., Int. J. of Pressure Vessels and Piping, 27 (1987) 91.Google Scholar
7. Frisius, F., Kampmann, R., Beaven, P. A., and Wagner, R., in Dimensional Stability and Mechanical Behavior of Irradiated Metals and Alloys-VI, BNES, London 1983, 171.Google Scholar
8. Beaven, P. A., Frisius, F., Kampmann, R., and Wagner, R., in Proc. Second Int'l Symp. On Environmental Degradation of Materials in Nuclear Reactors, Eds., Roberts, J. T. A., Weeks, J. R. and Theus, G. J., American Nuclear Society, LaGrange Park, IL (1986) 400.Google Scholar
9. Beaven, P. A., Frisius, F., Kampmann, R., Wagner, R., and Hawthorne, J. R., ASTMSTP1011, American Society for Testing and Materials, Philadelphia, PA (1989) 243.Google Scholar
10. Fint, J. A., Masters Thesis, University of California, Santa Barbara, 1990.Google Scholar
11. Kampmann, R., Frisius, F., Hackbarth, H., Beaven, P. A., Wagner, R., and Hawthorne, J. R., Proc. Fifth Int'l Symp. on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Eds., Cubicciotti, D., Simonen, E. P., and Gold, R. E., American Nuclear Society, LaGrange Park, IL (1992) 679.Google Scholar
12. Solt, G., Frisius, F., Waeber, W. B., and Tipping, P., ASTM-STP 1175, American Society for Testing and Materials, Philadelphia, PA (1993) 444.Google Scholar
13. Buswell, J. T., English, C. A., Hetherington, M. G., Phythian, W. J., Smith, G. D. W., and Worrall, G. M., ASTM-STP 1046, American Society for Testing and Materials, Philadelphia, PA (1990) 127.Google Scholar
14. Buswell, J. T., Bischler, P. J. E., Fenton, S. T., Ward, A. E., and Phythian, W. J., J. Nucl. Mat., 205 (1993) 198.Google Scholar
15. Phythian, W. J. and English, C. A., J. Nuc. Mat., 205 (1993) 162.Google Scholar
16. Odette, G. R., Lucas, G. E., Wirth, B., and Liu, C.-L., Proc. of the 24th Water Reactor Safety Meeting (in press).Google Scholar
17. Gerard, R., Fabry, A., Van de Velde, J., Puzzolante, J. L., Verstrepen, A., Ransbeeck, T. Van, and van Walle, E., ASTM-STP1270, American Society for Testing and Materials, Philadelphia, PA (1996) 294.Google Scholar
18. Odette, G. R., Lombrozo, P. M., and Wullaert, R. A., ASTM-STP870, American Society for Testing and Materials, Philadelphia, PA (1985) 840.Google Scholar
19. Mader, E., PhD Thesis, University of California, Santa Barbara, 1995.Google Scholar
20. Phythian, W. J., Dumbill, S., Brown, P., and Sinclair, R., Proc. Sixth Int'l Symp. On Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Eds.,Gold, R. E. and Simonen, E. P., TMS, Warrendale, PA (1993) 729.Google Scholar
21. Phythian, W., Odette, G. R., et. al., unpublished research.Google Scholar
22. Pareige, P. and Miller, M. K., App. Surf. Sci., 94/95 (1996) 370.Google Scholar
23. Pareige, P., Russell, K. F., and Miller, M. K., App. Surf. Sci., 94/95 (1996) 362.Google Scholar
24. Pareige, P., PhD Thesis, Rouen University (1994).Google Scholar
25. Miller, M. K. and Smith, G. D. W., Atom Probe Microanalysis: Principles and Applications to Materials Science (Materials Research Society, Pittsburgh, PA, 1989).Google Scholar
26. Miller, M. K. and Burke, M. G., J. Nuc. Mat., 195 (1992) 68.Google Scholar
27. Miller, M. K. and Burke, M. G.. ASTM-STP-1046 Volume II, American Society for Testing and Materials, Philadelphia, PA (1990) 107.Google Scholar
28. Mader, E., Odette, G. R., and Lucas, G. E., Proc. Sixth Int'l Symp. on Environmental Degradation of Materials in Nuclear Power Systems –; Water Reactors, Eds., Gold, R. E. and Simonen, E. P., TMS, Warrendale, PA (1993) 739.Google Scholar
29. Eason, E. D., Wright, J. E., Nelson, E. E., Odette, G. R., and Mader, E. V., NUREG/CR-6327, MCS 950302 (1995).Google Scholar
30. Odette, G. R., Mader, E. V., Lucas, G. E., Phythian, W. J., and English, C. A., ASTMSTP1175, American Society for Testing and Materials, Philadelphia, PA (1993) 373.Google Scholar
31. Odette, G. R., Lucas, G. E., and Klingensmith, R. D., ASTM-STP1270, American Society for Testing and Materials, Philadelphia, PA (1996) 606.Google Scholar
32. Odette, G. R. and Lucas, G. E., An Experimental Investigation of Kinetic Aspects of Neutron Irradiation Embrittlement of Light Water Reactor Pressure Vessel Steels, EPRI NP 6114, EPRI, Palo Alto (1989).Google Scholar
33. Goodman, S. R., Brenner, S. S., and Low, A., JR., Met Trans., 4 (1973) 2363.Google Scholar
34. Worrall, G. M., Buswell, J. T., English, C. A., Hetherington, M. G., and Smith, G. D. W., J. Nuc. Mat., 148 (1987) 107.Google Scholar
35. Kostorz, G. in Treatise on Materials Science and Technology, Vol. 15 (1979) 227.Google Scholar
36. Sears, V. F., Neutron News, 3 no. 3 (1992) 26.Google Scholar
37. Mathon, M. H., PhD Thesis, University of Paris – SUD (1995).Google Scholar
38. Kampmann, R., Odette, G. R., et. al., unpublished research.Google Scholar
39. Sumiyaka, K., Yoshitake, T., and Nakamura, Y., J. of the Phys. Soc. of Japan, 53 (1984) 3160.Google Scholar
40. Miller, M. K. (private communication).Google Scholar
41. Liu, C. L., Odette, G. R., Wirth, B., and G. E. Lucas to be presented at 1997 TMS meeting.Google Scholar
42. Phythian, W. (private communication).Google Scholar
43. Pavinich, W., unpublished research.Google Scholar
44. Feigin, L. A. and Svergun, D. I., Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum Press, New York and London, 1987.Google Scholar