Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-21T00:29:31.571Z Has data issue: false hasContentIssue false

OMVPE Growth of ZnSe Utilizing Zinc Amides as Source Compounds: Relevance to the Production of p-Type Material

Published online by Cambridge University Press:  25 February 2011

William S. Rees Jr
Affiliation:
Department of Chemistry and Materials Research and Technology Center, The Florida State University, Tallahassee, FL, 323006–3006 U.S.A.
David M. Green
Affiliation:
Department of Chemistry and Materials Research and Technology Center, The Florida State University, Tallahassee, FL, 323006–3006 U.S.A.
Timothy J. Anderson
Affiliation:
Department of Chemical Engineering and MICROFABRITECH, University of Florida, Gainesville, FL, 323006–3006 U.S.A
Eric Bretschneider
Affiliation:
Department of Chemical Engineering and MICROFABRITECH, University of Florida, Gainesville, FL, 323006–3006 U.S.A
Get access

Abstract

Growth of ZnSe on GaAs from H2S9 and Zn[N(TMS)2]2 precursors has been demonstrated. When Et2Zn is used as the zinc precursor a higher quality deposit is obtained. Results of experiments employing Et2Zn as the main zinc source with Zn[N(TMS)2]2 introduced at a dopant level indicate nitrogen has been incorporated. Final thin films were characterized by PL, XRD, SIMS, and Raman.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES AND FOOTNOTES

1. Reported at Device Research Conference, Boulder, CO., 17–19 June 1991.Google Scholar
2 Yasuda, T.; Mitsuishi, I.; Kukimoto, H. Appl. Phys. Lett, 1988, 52, 57.Google Scholar
3. Yoshikawa, A.; Muto, S.; Yamaga, S.; Kasai, S. Japan. J. Appl. Phys., 1988, 27, L260.Google Scholar
4. Yahata, A.; Mitsuhashi, H.; Hirahara, K.; Beppu, T. Japan. J. Appl. Phys., 1990, 29, L4.Google Scholar
5. Stutius, W. J. Crystal Growth., 1982, 59, 1.Google Scholar
6. a. Ohki, A.; Shibita, N.; Ando, K.; Katsui, A. J. Crystal Growth, 1988, 93, 692.CrossRefGoogle Scholar
b Ohki, A.; Shibata, N.; Zambutsu, S. Japan. J. Appl. Phys., 1988, 27, L909.Google Scholar
7. a. Yoshikawa, A.; Muto, S.; Yamaga, S.; Kasai, H. J. Crystal Growth, 1988, 86, 279.Google Scholar
b Yoshikawa, A.; Muto, S.; Yamaga, S.; Kasai, H. Japan. J. Appl. Phys., 1988 27, 992.Google Scholar
8. Suemune, I.; Yamada, K.; Masato, H.; Kando, T.; Kan, Y.; Yamanishi, M. Japan. J. Appl. Phys., 1988. 27, L2195.Google Scholar
9. a. Taike, A.; Migita, M.; Yamamoto, H. Appl. Phys. Lett., 1990, 56, 1989.Google Scholar
b. Migita, M.; Taike, A.; Yamamoto, H. J. Appl. Phys., 1990, 68, 880.Google Scholar
10. Rees, W. S. Jr; Green, D. M.; Anderson, T. J.; Bretschneider, E.; Pathangey, B.; Kim, J., accepted in J. Electronic Materials, 1992.Google Scholar
11. See, for example, Huheey, J. E. Inorganic Chemistry, second edition, Harper and Row: New York, 1978.Google Scholar
12. Rees, W. S. Jr, unpublished results.Google Scholar
13. Rees, W. S Jr; Green, D. M.; Hesse, W. “Synthesis and X-ray Diffraction Crystal Structure of Zn{N[(C(CH3)3)(Si(CH3)3)]}2. The First Solid State Characterization of a Homoleptic Zinc Amide”, submitted for publication.Google Scholar