Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T08:28:11.141Z Has data issue: false hasContentIssue false

OMVPE Growth of GalnAs/InP Quantum Well Structures

Published online by Cambridge University Press:  26 February 2011

G. B. Stringfellow*
Affiliation:
Center for Microelectronics and College of Engineering, University of Utah, Salt Lake City, Utah 84112
Get access

Abstract

InP/GalnAs/InP quantum well structures have been grown using atmospheric pressure organometallic vapor phase epitaxy (AP-OMVPE). The optimum conditions for growth of extremely abrupt interfaces were studied. The optimum orientation was exactly (100). The growth had to be interrupted for 40 seconds at the first interface and 2 minutes at the 2nd interface to obtain the most abrupt interfaces. The narrowest photoluminescence half widths were obtained at the lowest values (31) of V/III ratio in the input vapor phase. These growth conditions allow the growth of wells as thin as <10Å with photoluminescence (PL) spectra consisting of doublets or triplets. The extremely narrow peaks correspond to regions of the quantum well differing in thickness by a single monolayer. The energy separations of the neighboring peaks are found to increase with decreasing well width until, at a thickness of approximately 12 Å, the separation begins to decrease rapidly with decreasing well width. The exciton binding energies in the quantum wells have also been measured using thermally modulated PL. The binding energy is found to increase with decreasing well width until a maximum value of approximately 17 meV is measured for a nominal well width of approximately 13 Å. For thinner wells the exciton binding energy is found to decrease with decreasing well width.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ohno, H. and Barnhard, J., in: GalnAsP Alloy Semiconductors, Ed. Pearsall, T.P. (Wiley, New York, 1982) p. 437.Google Scholar
2.Temkin, H., Alavi, K., Wagner, W.R., Pearsall, T.P., and Cho, A.Y., Appl. Phys. Lett. 42 845 (1983).Google Scholar
3.Tsang, W.T., Appl. Phys. Lett. 44 288 (1984).Google Scholar
4.Koren, U., Miller, B.I., Koch, T.L., Boyd, G.D., Capik, R.J., and Soccolich, C.E., Appl. Phys. Lett. 49 1602 (1986).Google Scholar
5.Temkin, H., Gershoni, D., and Panish, M.B., Appl. Phys. Lett. 50 1776 (1987)..Google Scholar
6.Razeghi, M., Hirtz, J.P., Ziemelis, U.D., Delalande, C., Etienne, B., and Voos, M., Appl. Phys. Lett. 43 585 (1983).Google Scholar
7.Marsh, J.H., Roberts, J.S., and Claxton, P.A., Appl. Phys. Lett. 46 1161 (1985).Google Scholar
8.Temkin, H., Panish, M.B., Petroff, P.M., Hamm, R.A., Vandenberg, J.M., and Sumski, S., Appl. Phys. Lett. 47 394 (1985).Google Scholar
9.Tsang, W.T. and Schubert, E.F., Appl. Phys. Lett. 49 220 (1986).Google Scholar
10.Kuo, C.P., Fry, K.L., and Stringfellow, G.B., Appl. Phys. Lett. 47 855 (1985).Google Scholar
11.Skolnick, M.S., Tapster, P.R., Bass, S.J., Apsley, N., Pitt, A.D., Chew, N.G., Cullis, A.G., Allred, S.P., and Warwick, C.A., Appl. Phys. Lett. 48 1455 (1986).Google Scholar
12.Miller, B.I., Schubert, E.F., Koren, U., Ourmazd, A., Dayem, A.H., and Capik, J., Appl. Phys. Lett. 49 1384 (1986).Google Scholar
13.Carey, K.W., Hull, R., fouquet, J.E., Kellert, F.G., and Trott, G.R., Appl. Phys. Lett. 51, 910 (1987).Google Scholar
14.Wang, T.Y., Fry, K.L., Persson, A., Reihlen, E.H., and Stringfellow, G.B., Appl. Phys. Left. (submitted)Google Scholar
15.Wang, T.Y., Fry, K.L., Persson, A., Reihlen, E.H., and Stringfellow, G.B., J. Appl. Phys. (submitted)Google Scholar
16.Gal, M., Kuo, C.P., Lee, B., Raganathan, R., Taylor, P.C., and Stringfellow, G.B., Phys. Rev. B34 1356 (1986).Google Scholar
17.Kawaguchi, Y. and Asahi, H., Appl. Phys. Lett. 50 1243 (1987).Google Scholar
18.Skolnick, M.S., Taylor, L.L., Bass, S.J., Pitt, A.D., Mowbray, D.J., Cullis, A.G., and Chew, N.G., Appl. Phys. Lett. 51 24 (1987).Google Scholar
19.Razeghi, M., Nagle, J., and Weisbuch, C., Inst. Phys. Conf. Ser. No. 74, (Institute of Physics, London, 1985), 379.Google Scholar
20.Bastard, G., Phys. Rev. B 24 5693 (1981).Google Scholar
21.Moroni, D., Andre, J.P., Menu, E.P., Gentric, P.H., and Patillon, J.N., J. Appl. Phys. 62 2003 (1987).Google Scholar
22.Panish, M.B., Temkin, H., Hamm, R.A., and Chu, S.N.G., Appl. Phys. Lett. 49 164 (1986).Google Scholar
23.Lin, Z., Wang, T.Y., Stringfellow, G.B., and Taylor, P.C., Applied Physics Letters (submitted).Google Scholar
24.Weiner, J.S., Chemla, D.S., Miller, D.A.B., Wood, T.H., Sivco, D., and Cho, A.Y., Appl. Phys. Lett. 46 619 (1985).Google Scholar
25.Greene, R.L., Phys Rev 29B 1807 (1984).Google Scholar
26.Miller, R.C., Kleinman, D. A., Tsang, W.T., and Gossard, A.C., Phys. Rev.B24, 1134 (1981).Google Scholar
27.Kodama, T., Osaka, Y., and Yamanishi, M., Jpn. J. Appl. Phys. 24 1370 (1985)Google Scholar
28.Tsang, W.T., Chiu, T.H., Cunningham, J.E., and Robertson, A., Appl. Phys. Lett. 50 1376 (1987).Google Scholar
29.Sauer, R., Harris, T.D., and Tsang, W.T., Appl. Phys. Lett. 62 3374 (1987).Google Scholar