Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T12:39:46.296Z Has data issue: false hasContentIssue false

Ohmic Contacts on N-Type Hg0.4Cd0.6Te.

Published online by Cambridge University Press:  25 February 2011

Patrick W. Leech
Affiliation:
Telecom Australia Research Laboratories, Melbourne, Victoria, Australia
Geoffrey K. Reeves
Affiliation:
Victoria University of Technology, Victoria, Australia
Martyn H. Kibel
Affiliation:
Telecom Australia Research Laboratories, Melbourne, Victoria, Australia
Get access

Abstract

The electrical characteristics of In, Sn, Au and Pt contacts on n-type Hg0.4Cd0.6Te formed in the presence and absence of prior In2+ implantation have been examined. Measurements of specific contact resistance made using a Transmission Line Model have shown that the unimtlanted In/Hg0.4Cd0.6 and Sn/Hg0.4Cd0.6 junctions gave values of pc = 3.0x10−3 to 4.0x10−3 ohm.cm2. Auger sputter profiles of the asdeposited In/Hg0.4Cd0.6 and Sn/Hg0.4Cd0.6 interfaces have shown a significant in-diffusion of the metal overlayer. The influence of shallow In2+ implantation prior to metallization was an increase in pc which occurred above a dose of 1013 ions/cm2. In contrast, Pt and Au formed Schottky barrier diodes on n-type Hg0.4Cd0.6 with øb=0.69eV for Pt and øb=0.79eV for Au. With prior In2+ implantation, both Pt and Au contacts exhibited an ohmic behaviour with pc= 2x10−1 ohm.cm2. These results have significance in the fabrication of devices for 1.0 -2.5μm optical communications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Orsal, B., Alabedra, R., Valenza, M., LeCoy, G.P., Meslage, J. and Boisrobert, C.Y., IEEE Trans. Electron Devices, E (1988), 101.Google Scholar
2 Thompson, J., Mackett, P., Jenkin, G.T., Duy, T. Nguyen and Gori, P., J. Crystal Growth, 86, (1988), 917.Google Scholar
3. Spicer, W.E., Friedman, D.J. and Carey, G.P., J.Vac.Sci. Technol., A6, (1988), 2746.Google Scholar
4. Leech, P.W., J. Appl. Phys., 68 (2), (1990), 1174.Google Scholar
5. Spicer, W.E., J.Vac.Sci.Technol., A8 (2), (1990), 1174.CrossRefGoogle Scholar
6. Shannon, J.M., Solid State Electronics, 19, (1976), 537.CrossRefGoogle Scholar
7. Han, C.C., Marshall, E.D., Fang, F., Wang, L.C., Lau, S.S. and Voreades, D., J. Vac. Sci. Technol. B6 (6), (1988), 1662.Google Scholar
8. Pain, G., Bharatula, N., Elms, T.J., Gwynn, P., Kibel, M., Kwietniak, M.S., Leech, P., Petkovic, N., Sandford, C., Thompson, J., Warminiski, T., Gao, D., Glanvill, S.R., Rossouw, C.J., Stevenson, A.W., Wilkins, S.W. and Wielunski, L., J. Vac. Sci. Technol., A8 (2), (1990), 1067.CrossRefGoogle Scholar
9. Leech, P.W., Gwynn, P.J. and Kibel, M.H., App. Surf. Sci., 37, (1989), 291.Google Scholar
10. Reeves, G.K. and Harrison, H.B., IEEE Electron Device Lett. EDL 3 (1982), 111.Google Scholar
11. Johnson, E.S. and Schmitt, J.T., J. Electronic Mats., 6 (1), (1977), 25.CrossRefGoogle Scholar
12. Popovic, R.S., Solid State Electronics, 21, (1978) 1133.Google Scholar
13. Brice, J. and Capper, P. (eds.), Properties of Mercury Cadmium Telluride, EMIS Datareviews Series No.3, The Institution of Electrical Engineers, London, (1987), Chap. 2.1, Chap. 3.2.Google Scholar
14. Margalit, S. and Nemirovsky, Y., J. Electrochem. Soc., 127 (6), (1980), 1406.Google Scholar
15. Vydyanath, H.R., J. Electrochem. Soc., 128 (12), (1981), 2619.Google Scholar
16. Uzan-Saquy, C., Comedi, D., Richter, V., Kalish, R. and Triboulet, R., J.Vac.Sci. Technol., A7 (4), (1989), 2575.CrossRefGoogle Scholar