Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-06T20:15:38.935Z Has data issue: false hasContentIssue false

Nucleation and Growth of Gallium Nitride Films on Si and Sapphire Substrates Using Buffer Layers

Published online by Cambridge University Press:  15 February 2011

N. R. Perkins
Affiliation:
University of Wisconsin, Materials Science Program, Madison, WI
M. N. Horton
Affiliation:
University of Wisconsin, Materials Science Program, Madison, WI
D. Zhi
Affiliation:
University of Wisconsin, Materials Science Program, Madison, WI
R. J. Matyi
Affiliation:
University of Wisconsin, Department of Materials Science and Engineering, Madison, WI
Z. Z. Bandic
Affiliation:
California Institute of Technology, Department of Applied Physics, Pasadena, CA
T. C. McGill
Affiliation:
California Institute of Technology, Department of Applied Physics, Pasadena, CA
T. F. Kuecht
Affiliation:
University of Wisconsin, Dept. of Chemical Engineering, Madison, WI
Get access

Abstract

We have investigated the nucleation and growth of gallium nitride (GaN) films on silicon and sapphire substrates using halide vapor phase epitaxy (HVPE). GaN growth was carried out on bare Si and sapphire surfaces, as well as on MOVPE-grown GaN buffer layers. HVPE growth on MOVPE GaN/AlN buffer layers results in lower defect densities as determined by x-ray than growth directly on sapphire. HVPE GaN films grown directly on sapphire exhibit strong near-edge photoluminescence, a pronounced lack of deep level-based luminescence, and x-ray FWHM values of 16 arcsec by an x-ray θ-2θ scan. The crystallinity of GaN films on sapphire is dominated by the presence of rotational misorientation domains, as measured by xray ω-scan diffractometry, which tend to decrease with increasing thickness or with the use of a homoepitaxial MOVPE buffer layer. The effect of increasing film thickness on the defect density of the epilayer was studied. In contrast, the HVPE growth of nitride films directly on silicon is complicated by mechanisms involving the formation of silicon nitrides and oxides at the initial growth front.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Crystal Growth 98, 209219 (1989).Google Scholar
2. Nakamura, S., Jap. J. Appl. Phys. 30(10A), L1705-L1707 (1991)Google Scholar
3. Koide, Y., Itoh, N., Itoh, K., Sawaki, N., and Akasaki, I., Jap. J. Appl. Phys. 27(7), 1156– 1161 (1988).Google Scholar
4. Maruska, H. and Tietjen, J., Appl. Phys. Lett. 15, 327 (1969)Google Scholar
5. Detchprohm, T., Hiramatsu, K., Amano, H., and Akasaki, I., Appl. Phys. Lett 61, 26882690 (1992).Google Scholar
6. Lagerstedt, O. and Monemar, B., J. Appl. Phys. 45, 22662272 (1974).Google Scholar
7. Pankove, J.I., Berkeyheiser, J.E., and Miller, E.A., J. Appl. Phys. 45, 12801286 (1974).Google Scholar
8. Perkins, N.R., Horton, M.N., and Kuech, T.F., (Proc. Mat. Res. Soc., Boston, MA, 1995, paper AAA2.9), to be published.Google Scholar
9. Watanabe, A., Takeuchi, T., Hirosawa, K., Amano, H., Hiramatsu, K., and Akasaki, I., J. Crystal Growth 128, 391396 (1993).Google Scholar
10. For example, see Milchev, A., Stoyanov, S., and Kaischew, R., Thin Solid Films, 22(22), 255 (1974).Google Scholar
11. Nikitina, I. and Dmitriev, V., (Inst. Phys. Conf. Ser. 141, San Diego, CA, 1994), 431436.Google Scholar
12. Grimmeiss, H.G. and Monemar, B., J. Appl. Phys. 41, 4054 (1970).Google Scholar
13. Suski, T., Perlin, P., Teisseyre, H., Leszczynzki, M., Grzegory, I., Jun, J., Bockowski, M., Porowski, S., and Moustakis, T.D., Appl. Phys. Lett 67(15), 21882190 (1995).Google Scholar
14. Hacke, P., Maekawa, A., Kiode, N., Hiramatsu, K., and Sawaki, N., Jpn. J. Appl. Phys 33(1, 12A), 64436447 (1994).Google Scholar
15. Kuech, T.F., Segmuller, A., Kuan, T.S., and Goorsky, M.S., J. Appl. Phys. 67(10), 6497– 6506 (1990).Google Scholar
16. Ito, T., Hijiya, S., Nozaki, T., Arawaka, H., Shinoda, M., and Fukukawa, Y., J. Eectrochem. Soc. 125(3), 448452 (1978).Google Scholar
17. Wu, C.-Y., King, C.-W., Lee, M.-K., and Chen, C.-T., J. Electrochem. Soc. 129(7), 15591563 (1982).Google Scholar
18. Perkins, N. and Kuech, T.F., manuscript in preparation.Google Scholar