Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T12:35:06.826Z Has data issue: false hasContentIssue false

Nucleation and Growth of CrSi2 on Si(111)

Published online by Cambridge University Press:  28 February 2011

R.W. Fathauer
Affiliation:
Jet Propulsion Laboratory. California Institute of Technology, Pasadena, CA 91109
P.J. Grunthaner
Affiliation:
Jet Propulsion Laboratory. California Institute of Technology, Pasadena, CA 91109
T.L. Lin
Affiliation:
Jet Propulsion Laboratory. California Institute of Technology, Pasadena, CA 91109
K.T. Chang
Affiliation:
Materials Science Department, University of Southern California, Los Angeles, CA 90089-0241
J.H. Mazur
Affiliation:
Materials Science Department, University of Southern California, Los Angeles, CA 90089-0241
Get access

Abstract

Chromium disilicide layers have been grown on Si(111) in a commercial molecular beam epitaxy machine. Islands are found to nucleate with more than one epitaxial orientation, and three different orientations have been identified: CrSi2(0001)//Si(111) with CrSi2 [1010]//Si[110]. CrSi2(0001)//Si(111) with CrSi2[ll20]//Si[1l0], and CrSi2(1100)//Si(111) with CrSi2[000l]//Si[112]. Very thin (2 nm) layers have been studied under a variety of growth conditions to determine factors controlling the orientation of nuclei. The degree and direction of substrate misorientation, the growth technique, and the use of a CoSi2 buffer layer are all factors affecting the morphology of CrSi2 islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kastalsky, A., Luryi, S., Bean, J.C., and Sheng, T.T., Proceedings of the First International Symposium on Si Molecular Beam Epitaxy, edited by Bean, J.C. (Electrochemical Society, Pennington, NJ, 1985), pp. 406411.Google Scholar
2 Abstreiter, G.. Brugger, H., Wolf, T., Jorke, H., and Herzog, H.J., Phys. Rev. Lett. 54, 2441 (1985).Google Scholar
3 Fischer, R., Morkoc, H., Neumann, D.A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M., and Erickson, L.P., J. Appl. Phys, 60, 1640 (1986).CrossRefGoogle Scholar
4 Tung, R.T., Bean, J.C., Gibson, J.M., Poate, J.M., and Jacobson, D.C., Appl. Phys. Lett. 40, 684 (1982).Google Scholar
5 Tung, R.T., Gibson, J.M., and Poate, J.M., Appl. Phys. Lett. 42, 888 (1983).Google Scholar
6 Ishiwara, H., Hikosaka, K., Nagatoma, M., and Furukawa, S., Surf. Sci. 86, 711 (1979).Google Scholar
7 Gurvitch, M., Levi, A.F.J., Tung, R.T., and Nakahara, S., Appl. Phys. Lett. 51, 311 (1987).CrossRefGoogle Scholar
8 Chen, L.J., Cheng, H.C., and Lin, W.T., Proc. Nat]. Scd. Counc. ROC (A) 10, 175 (1986).Google Scholar
9 Bost, M.C. and Mahan, John E., J. Appl. Phys. 63, 839 (1988).Google Scholar
10 Shiau, F.Y., Cheng, H.C., and Chen, L.J., Appl. Phys. Lett. 45, 524 (1984).Google Scholar
11 Shiau, F.Y., Cheng, H.C., and Chen, L.J., J. Appl. Phys. 59, 2784 (1986).Google Scholar
12 Grunthaner, P.J., Grunthaner, F.J., Lin, T.L., Fathauer, R.W., Pate, B., Schowengerdt, F.D., and Mazur, J.H., in Proceedings of the Second International Symposium on Silicon Molecular Beam Epitaxy. edited by Bean, J.C. and Schowalter, L.J. (Electrochemical Society, Pennington, NJ, 1988), pp. 375391.Google Scholar
13 Ishibashi, K. and Furukawa, S., Jpn. J. Appl. Phys. 24, 912 (1985).CrossRefGoogle Scholar
14 Stowell, M.J., in Epitaxial Growth. Part B, edited by Matthews, J.W. (Academic, New York, 1975), pp. 437492.Google Scholar