Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-19T03:46:57.301Z Has data issue: false hasContentIssue false

Novel Use of Surfactants in Copper Chemical Mechanical Polishing (CMP)

Published online by Cambridge University Press:  01 February 2011

Youngki Hong
Affiliation:
Interdisciplinary Engineering Science, Clarkson University, Potsdam, New York 13699
Udaya B. Patri
Affiliation:
Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699
Suresh Ramakrishnan
Affiliation:
Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699
S.V. Babu
Affiliation:
Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699 Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699
Get access

Abstract

In this study, the interaction between several kinds of surfactants and copper surface was examined to control the dissolution of copper during CMP. Among those surfactants, sodium dodecylsulfate (SDS), one of the conventional anionic surfactants, showed effective interaction with copper and significantly suppressed the dissolution of the copper at acidic and neutral pH ranges in a model copper CMP slurry system consisting of 3 wt% fumed silica, 1 wt% glycine, and 5 wt% hydrogen peroxide in deionized water. The inhibition performance of copper dissolution by SDS is better than that of Benzotriazole (BTA), a conventional inhibiting agent of copper dissolution in a copper CMP slurry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ulman, A., An Introduction to Ultra thin Organic Films, Academic Press, Boston (1991).Google Scholar
2. Itano, M., Kezuka, T., Ishii, M., Unemoto, T., Kubo, M., and Ohmi, T., J. Electrochem. Soc., 142, 971 (1995).Google Scholar
3. Ohmi, T., J. Electrochem. Soc., 143, 2957 (1996).Google Scholar
4. Colic, M., Fuerstenau, D. W., Langmuir, 13, 6644 (1997).Google Scholar
5. Solomon, M. J., Saeki, T., Wan, M., Scales, P. J., Boger, D. V., Usui, H., Langmuir, 15, 20 (1999).Google Scholar
6. Koopal, L. K., Goloub, T., deKaiser, A., Sidorova, M. P., Colloids Surf., 151, 15 (1999).Google Scholar
7. Bremmel, K. E., Jameson, G. J., Biggs, S., Colloids Surf., 146, 755 (1999).Google Scholar
8. Evanko, C. R., Dzombak, D. A., Novak, J. W., Colloids Surf., 110, 219 (1996).Google Scholar
9. Adler, J. J., Singh, P. K., Patist, A., Rabinovich, Y. I., Shah, D. O. and Moudgil, B. M.., Langmuir, 16, 72557262 (2000).Google Scholar
10. Kumar, A., Biebuyck, H. A., Whitesides, G. M., Langmuir, 10, 1498 (1994).Google Scholar
11. Miller, A.E., Fischer, P.B., Boardman, J.A., Feller, A.D., Cadien, K.C., Proceedings of 9th International symposium on Chemical-Mechanical Planarization, Lake placid, NY (2004).Google Scholar
12. Kang, H., Katch, T., Lee, M., Park, H., Paik, U. and Park, J., Jpn. J. Appl. Phys., 43, 8B, 1060 (2004).Google Scholar
13. Tadros, Th. F., Solid/liquid dispersions, Academic Press, Orlando (1987).Google Scholar
14. Park, G. A., Chem. Rev. 65, 177198 (1965).Google Scholar
15. Allara, D. L., and Nuzzo, R. G., Langmuir, 1, 45 (1985).Google Scholar
16. Allara, D. L., and Nuzzo, R. G., Langmuir, 1, 52 (1985).Google Scholar
17. Ogawa, H., Chihera, T., Taya, K. J., Am. Chem. Soc., 107, 1365 (1985).Google Scholar
18. Schlotter, N. E., Porter, M. D., Bright, T. B., Allara, D. L., Chem. Phys. Lett., 132, 93 (1986).Google Scholar
19. Ma, H., Chen, S., Yin, B., Zhao, S., and Liu, X., Corros. Sci. 45, 867 (2003).Google Scholar