Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-16T22:19:25.087Z Has data issue: false hasContentIssue false

A Novel Technology to Create Monolithic Instruments for Micro Total Analysis Systems

Published online by Cambridge University Press:  01 February 2011

Konstantin Seibel
Affiliation:
Research Center for Micro- and Nanochemistry and Engineering (Cμ)University of Siegen, D-57068 Siegen, Germany
Lars Schöler
Affiliation:
Research Center for Micro- and Nanochemistry and Engineering (Cμ)University of Siegen, D-57068 Siegen, Germany
Marcus Walder
Affiliation:
Research Center for Micro- and Nanochemistry and Engineering (Cμ)University of Siegen, D-57068 Siegen, Germany
Heiko Schäfer
Affiliation:
Research Center for Micro- and Nanochemistry and Engineering (Cμ)University of Siegen, D-57068 Siegen, Germany
André Schäfer
Affiliation:
Research Center for Micro- and Nanochemistry and Engineering (Cμ)University of Siegen, D-57068 Siegen, Germany
Tobias Pletzer
Affiliation:
now with Institute of Semiconductor Electronics, RWTH Aachen, D-52074 Aachen, Germany
René Püschl
Affiliation:
Research Center for Micro- and Nanochemistry and Engineering (Cμ)University of Siegen, D-57068 Siegen, Germany
Michael Waidelich
Affiliation:
Research Center for Micro- and Nanochemistry and Engineering (Cμ)University of Siegen, D-57068 Siegen, Germany
Heiko Ihmels
Affiliation:
now with Institute of Semiconductor Electronics, RWTH Aachen, D-52074 Aachen, Germany
Dietmar Ehrhardt
Affiliation:
Research Center for Micro- and Nanochemistry and Engineering (Cμ)University of Siegen, D-57068 Siegen, Germany
Markus Böhm
Affiliation:
Research Center for Micro- and Nanochemistry and Engineering (Cμ)University of Siegen, D-57068 Siegen, Germany
Get access

Abstract

The feasibility of micro total analysis systems (μTAS) on microchips based on the concept of a monolithic instrument is demonstrated. In such a device a microfluidic layer system is deposited in a backend process on a conventional CMOS integrated circuit with the aim to achieve cost and performance enhancements through integration and miniaturization. Experimental results on elementary functional components of a μTAS are presented including a narrow channel electroosmotic micropump, a micro mass flow meter using the thermal anemometric principle, a micro cytometer with integrated optical detection, and elementary structures for on-chip micro-capillary electrophoresis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schäfer, H., Chemnitz, S., Seibel, K., Kozij, V., Fischer, A., Ehrhardt, D., Böhm, M., in The Nano-Micro Interface, eds. Fecht, H.-J., Werner, M. (WILEY-VCH Verlag, 2004), p. 119.Google Scholar
2 Schäfer, H., Seibel, K., Walder, M., Schöler, L., Pletzer, T., Waidelich, M., Ihmels, H., Schmittel, M., Ehrhardt, D., Böhm, M., Proc. Micro Total Analysis Systems 2004, vol.2, 443445, 2004.Google Scholar
3 Schäfer, H., Seibel, K., Walder, M., Schöler, L., Pletzer, T., Waidelich, M., Ihmels, H., Ehr-hardt, D., Böhm, M., Proc. Micro Electro Mechanical Systems 2005, 758761, 2005.Google Scholar
4 Schöler, L., Lange, B., Seibel, K., Schäfer, H., Walder, M., Friedrich, N., Ehrhardt, D., Schönfeld, F., Zech, G., Böhm, M., 30th International Conference on Micro and Nano Engineering, September 19-22, Rotterdam, NL, 2004, Microelectronic Engineering, in press, 2004.Google Scholar
5 Chen, C.-H., Santiago, J., Journal of Microelectromechanical Systems Vol. 11, No. 6, 672683 (2002).Google Scholar
6 Studer, V., A. Pépin, Chen, Y., Ajdari, A., Microelectronic Engineering 61-62, 915 (2002).Google Scholar
7 Mutlu, S., Yu, C., Selvaganapathy, P., Svec, F., Mastrangelo, C., Fréchet, J., Proc. IEEE MEMS 2002 Conference, Las Vegas, USA, 1924, 2002.Google Scholar
8 Seibel, K., Schäfer, H., Kozij, V., Ehrhardt, D., Böhm, M., presented at the 29th International Conference on Micro and Nano Engineering, September 22-25, Cambridge, UK, 2003.Google Scholar
9 Takamura, Y., Onoda, H., Inokuchi, H., Adachi, S., Oki, A., Horiike, Y., Electrophoresis 24, 185 (2003).Google Scholar
10 Mutlu, S., Svec, F., Mastrangelo, C., Fréchet, J., Gianchandani, Y., Proc. IEEE MEMS 2004 Conference, Maastricht, The Netherlands, 850853, 2004.Google Scholar
11 Lammerink, T. S. J., Tas, N. R., Elwenspoek, M., Fluitman, J. H. J., Sensors and Actuators A 37-38, 4550 (1993).Google Scholar
12 CFD-ACE+, CFD Research Corporation, 2004, Huntsville, USA, (http://www.cfdrc.com).Google Scholar
13 Laugere, F., Guijt, R. M., Bastemeijer, J., Steen, G. van der, Berthold, A., Baltussen, E., Sarro, P., Dedem, G. van, Vellekoop, M., Bossche, A., Anal. Chem. 75, 306312 (2003).Google Scholar
14 Verpoorte, E., Lab Chip 3, 42N-52N (2003).Google Scholar
15 Kamei, T., Paegel, B. M., Scherer, J. R., Skelley, A. M., Street, R. A., Mathies, R. A., Anal. Chem. 75, 53005305 (2003).Google Scholar
16 Ihmels, H., Meiswinkel, A., Mohrschladt, C. J., Org. Lett. 2, 2865 (2000).Google Scholar
17a) Fixe, F., Chu, V., Prazeres, D.M.F., Conde, J.P., Nucl. Acid Res. 32, e70 (2004). b) V. Chu (private communication).Google Scholar