Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T04:20:33.763Z Has data issue: false hasContentIssue false

Novel Polymer Gel Electrolytes with Poly(oxyethylene)-Amidoacid Microstructures for Highly Efficient Quasi-Solid-State Dye-Sensitized Solar Cells

Published online by Cambridge University Press:  07 October 2014

Sheng-Yen Shen
Affiliation:
Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
Rui-Xuan Dong
Affiliation:
Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
Po-Ta Shih
Affiliation:
Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
Kuo-Chuan Ho
Affiliation:
Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
Jiang-Jen Lin*
Affiliation:
Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
Get access

Abstract

A cross-linked copolymer was designed and synthesized bythe imidation of poly(oxyethylene)-diamine and 4,4’-oxydiphthalic anhydride, and followed by a late-stage curing to generate the cross-linked gels. The copolymers consisting of crosslinking sites and multiple functionalities such aspoly(oxyethylene)-segments, amido-acids, imides, and amine termini, characterized by Fourier Transform Infrared Spectroscopy. After the self-curing at 80 °C, the gel-like material enabled to absorb liquid form of electrolytesin the medium of propylene carbonate(PC), dimethylformamide(DMF),and N-methyl-2-pyrrolidone(NMP).By using a field emission scanning electronic microscope, we observed a 3D interconnected nanochannel microstructure, within which, the liquid electrolytes were absorbed. When the novel polymer gel electrolyte (PGE) was fabricated into a dye-sensitized solar cell (DSSC), an extremely high photovoltaic performance was demonstrated. The PGE, absorbed 76.7 wt% of the liquid electrolyte (soaking in the PC solution) based on the polymer’s weight gave rise to a power conversion efficiency of 8.31%, superior to that (7.89%) of the DSSC with liquid electrolytes. It was further demonstrated that the cell had a long-term stabilityduring the test of 1000hat-rest at room temperature or only slightly decreasing in efficiency of 5%.This is the first time demonstration for a PGE exhibiting a higher performance than its liquid counterpart cell. The observation is ascribed to the suppression of the back electron transfer through the unique morphology of the polymer microstructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hagfeldt, A.; Grätzel, M. Acc. Chem. Res., 33, 269(2000).10.1021/ar980112jCrossRefGoogle Scholar
Durrant, J. R.; Haque, S. A. Nat. Mater., 2, 362(2003).10.1038/nmat914CrossRefGoogle Scholar
Nogueira, A.F.; Durrant, J.R.; Paoli, M. A. Adv. Mater., 13, 826(2001).10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L3.0.CO;2-L>CrossRef3.0.CO;2-L>Google Scholar
Figgemeier, E.; Hagfeldt, A. Int. J. Photoenergy, 6, 127(2004).10.1155/S1110662X04000169CrossRefGoogle Scholar
Asghar, M. I.; Miettunen, K.; Halme, J.; Vahermaa, P.; Toivola, M.; Aitola, K.; Lund, P. Energ. Environ. Sci., 3, 418(2010).10.1039/b922801bCrossRefGoogle Scholar
Reiter, J.; Vondrak, J.; Michalek, J.; Micka, Z. Electrochim. Acta, 52, 1398(2006).10.1016/j.electacta.2006.07.043CrossRefGoogle Scholar
Zakeeruddin, S. M.; Grätzel, M. Adv. Funct. Mater., 19, 2187(2009).10.1002/adfm.200900390CrossRefGoogle Scholar
Nogueira, A. F.; Longo, C.; De Paoli, M. A. Coord. Chem. Rev., 248, 1455(2004).10.1016/j.ccr.2004.05.018CrossRefGoogle Scholar
Kumara, G. R. A.; Konno, A. ; Shiratsuchi, K.; Tsukahara, J.; Tennakone, K. Chem. Mater., 14, 954(2002).10.1021/cm011595fCrossRefGoogle Scholar
Bach, U.; Lupo, D.; Comte, P.; Moser, J. E. ; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Nature, 395, 583(1998).10.1038/26936CrossRefGoogle Scholar
Freitas, J. N. D.; Nogueira, A. F.; Paoli, M. A. D. J. Mater. Chem., 19, 5279(2009).10.1039/b900928kCrossRefGoogle Scholar
Kuang, D.; Wang, P.; Ito, S.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc., 128, 7732(2006).10.1021/ja061714yCrossRefGoogle Scholar
Mohmeyer, N.; Kuang, D.; Wang, P.; Schmidt, H. W.; Zakeeruddin, S. M.; Grätzel, M. J. Mater. Chem., 16, 2978(2006).10.1039/B604021GCrossRefGoogle Scholar
Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Hao, S.; Sato, T.; Yin, S. Adv. Mater., 19, 4006(2007).10.1002/adma.200602886CrossRefGoogle Scholar
Cao, F.; Oskam, G.; Searson, P. C. J. Phys. Chem., 99, 17071(1995).10.1021/j100047a003CrossRefGoogle Scholar
Tu, C. W.; Liu, K. Y.; Chien, A. T.; Lee, C. H.; Ho, K. C.; Lin, K. F. Eur. Polym. J., 44, 608(2008).10.1016/j.eurpolymj.2008.01.005CrossRefGoogle Scholar
Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M. Nat. Mater., 2, 402(2003).10.1038/nmat904CrossRefGoogle Scholar
Yang, H.; Huang, M.; Wu, J.; Lan, Z.; Hao, S.; Lin, J. Mater. Chem. Phys., 110, 38(2008).10.1016/j.matchemphys.2008.01.010CrossRefGoogle Scholar