Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T21:49:27.370Z Has data issue: false hasContentIssue false

A Novel Near-field Raman and White Light Imaging System for Nano Photonic and Plasmonic Studies

Published online by Cambridge University Press:  01 February 2011

Ze Xiang Shen
Affiliation:
zexiang@ntu.edu.sg, Nanyang Technological University, Physics and Applied Physics, 1 Nanyang Walk, Blk 5 Level 3, Singapore, 637371, Singapore
J. Kasim
Affiliation:
g040001@ntu.edu.sg, Nanyang Technological University, Physics and Applied Physics, 1 Nanyang Walk, Blk 5 Level 3, Singapore, 637371, Singapore
Y. M. You
Affiliation:
g040002@ntu.edu.sg, Nanyang Technological University, Physics and Applied Physics, 1 Nanyang Walk, Blk 5 Level 3, Singapore, 637371, Singapore
C. L. Du
Affiliation:
cldu@ntu.edu.sg, Nanyang Technological University, Physics and Applied Physics, 1 Nanyang Walk, Blk 5 Level 3, Singapore, 637371, Singapore
Get access

Abstract

We show the approaches in achieving high resolution Raman and white light imaging. In Raman imaging, a dielectric microsphere is trapped by the incoming laser, which was focused onto the sample by the microsphere. The microsphere was also used to collect the scattered Raman signals. We show the capability of this method in imaging various types of samples, such as Si devices and gold nanopattern. This method is comparatively easier to perform, better repeatability, and stronger signal than the normal near-field Raman techniques. Besides the Raman imaging, we also show a far-field confocal white light reflection imaging system that can be used for the fast imaging and characterization of nanostructures. This system uses a xenon (Xe) lamp as the incident light source and tunable aperture to enhance the spatial resolution. It has a spatial resolution of around 370 nm at a wavelength of 590 nm. With our system, we can clearly resolve images of 300 nm nanoparticles arranged in 2D honeycomb arrays with a period of 500 nm. Localized surface plasmons (LSPs) of isolated single and dimer gold nanospheres were also studied and the resonance energy difference between their LSPs was extracted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pohl, D. W., Denk, W., and Lanz, M., Appl. Phys. Lett. 44, 651653 (1984).Google Scholar
2. Hecht, B., Heinzelmann, H., and Pohl, D. W., Ultramicroscopy 57, 228234 (1995).Google Scholar
3. Kim, J., Kim, J. H., Song, K. B., Lee, S. Q., Kim, E. K., Choi, S. E., Lee, Y., and Park, K. H., J. Microsc. 209, 236239 (2003).Google Scholar
4. Zenhausern, F., Martin, Y., and Wickramasinghe, H. K., Science 269, 10831085 (1995).Google Scholar
5. Pan, D. H., Klymyshyn, N., Hu, D. H., and Lu, H. P., Appl. Phys. Lett. 88, 093121 (2006).Google Scholar
6. Frey, H. G., Bolwien, C., Brandenburg, A., Ros, R., and Anselmetti, D., Nanotechnology 17, 31053110 (2006).Google Scholar
7. Ashkin, A., Science 210, 10811088 (1980).Google Scholar
8. Ashkin, A., Proc. Natl. Acad. Sci. USA 94, 48534860 (1997).Google Scholar
9. Li, X., Chen, Z. G., Taflove, A., and Backman, V., Opt. Express 13, 526533 (2005).Google Scholar
10. Lecler, S., Takakura, Y., and Meyrueis, P., Opt. Lett. 30, 26412643 (2005).Google Scholar
11. Birkbeck, A. L., Zlatanovic, S., Esener, S. C., and Ozkan, M., Opt. Lett. 30, 27122714 (2005).Google Scholar
12. Yi, K. J., Wang, H., Lu, Y. F., and Yang, Z. Y., J. Appl. Phys. 101, 063528 (2007).Google Scholar
13. Emery, S. R., Haskins, W. E., Nie, S. M., J. Am. Chem. Soc. 120, 80098010 (1998).Google Scholar
14. Feldstein, M. J., Keating, C. D., Liau, Y. H., Natan, M. J., Scherer, N. F., J. Am. Chem. Soc. 119, 66386647 (1997).Google Scholar
15. Kawata, S., Near-field Optics and Surface Plasmon Polaritons, Kawata, S., Ohtsu, M., irie, M., Eds. (Springer, 2001).Google Scholar
16. Grigorenko, N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., J. Petrovic, Nature 438, 335338 (2005).Google Scholar
17. Grigorenko, A. N., Gleeson, H. F., Zhang, Y., Roberts, N. W., Sidorov, A. R., Panteleev, A. A., App. Phys. Lett. 88, 124103 (2006).Google Scholar
18. Kitson, S. C., Barnes, W. L., Sambles, J. R., Phys. Rev. Lett. 77, 26702673 (1996).Google Scholar
19. Haes, A. J. and Van, R. P. Duyne, J. Am. Chem. Soc. 124, 1059610604 (2002).Google Scholar
20. Brolo, A. G., Arctander, E., Gordon, R., Leathem, B., Kavanagh, K. L., Nano Lett. 4, 20152018 (2004).Google Scholar
21. Grand, J., Chapelle, M. Lamy de la, Bijeon, J.-L., Adam, P.-M., Vial, A., Royer, P., Phys. Rev. B 72, 033407 (2005).Google Scholar
22. Sherry, L. J., Jin, R., Mirkin, C. A., Schatz, G. C., Van Duyne, R. P., Nano Lett. 6, 20602065 (2006).Google Scholar
23. Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C., Duyne, R. P. V., Nano Lett. 7, 19471952 (2007).Google Scholar
24. Noguez, C., J. Phys. Chem. C 111, 38063819 (2007).Google Scholar
25. Notingher, I. and Elfick, A., J. Phys. Chem. B 109, 1569915706 (2005).Google Scholar
26. Laurent, G., Félidj, N., Truong, S. Lau, Aubard, J., Lévi, G., Krenn, J. R., Hohenau, A., Leitner, A., Aussenegg, F. R., Nano Lett. 5, 253258 (2005).Google Scholar
27. Laurent, G., Félidj, N., Grand, J., Aubard, J., Lévi, G., Hohenau, A., Aussenegg, F. R., Krenn, J. R., Phys. Rev. B 73, 245417 (2006).Google Scholar
28. Pecheva, E., Montgomery, P., Montaner, D., Pramatarova, L., Langmuir 23, 39123918 (2007).Google Scholar
29. Ni, Z. H., Wang, H. M., Kasim, J., Fan, H. M., Yu, T., Wu, Y. H., Feng, Y. P., Shen, Z. X., Nano Lett. 7, 27582763 (2007).Google Scholar
30. Lindfors, K., Kalkbrenner, T., Stoller, P., Sandoghdar, V., Phys. Rev. Lett. 93, 037401 (2004).Google Scholar
31. Youk, Y. and Kim, D. Y., Opt. Commun. 262, 206210 (2006).Google Scholar
32. Rembe, C. and Dräbenstedtb, A., Rev. Sci. Instrum. 77, 083702 (2006).Google Scholar
33. Gütay, L. and Bauer, G.H., Thin Solid Films 515, 62126216 (2007).Google Scholar
34. Cvitkovic, A., Ocelic, N., Hillenbrand, R., Nano Lett. 7, 31773181 (2007).Google Scholar
35. Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I., Cortie, M. B., Nanotech. 18, 165505 (2007).Google Scholar
36. Sönnichsen, C., Geier, S., Hecker, N. E., Plessen, G. von, Feldmann, J., Ditlbacher, H., Lamprecht, B., Krenn, J. R., Aussenegg, F. R., Chan, V. Z-H., Spatz, J. P., Möller, M., Appl. Phys. Lett. 77, 29492951 (2000).Google Scholar
37. Jensen, T., Duval, M., Kelly, K., Lazarides, A., Schatz, G., Duyne, R. Van, J. Phys. Chem. B 103, 98469853 (1999).Google Scholar
38. Ormonde, A. D., Hicks, E. C. M., Castillo, J., Duyne, R. P. V., Langmuir 20, 69276931 (2004).Google Scholar
39. Dijk, M. A. V., Lippitz, M. , Orrit, M., Acc. Chem. Res. 38, 594601 (2005).Google Scholar
40. Moores, A. and Goettmann, F., New J. Chem. 30, 11211132 (2006).Google Scholar
41. Benrezzak, S., Adam, P. M., Bijeon, J. L., Royer, P., Surf. Sci. 491, 195207 (2001).Google Scholar