Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T05:06:41.087Z Has data issue: false hasContentIssue false

A Novel Microwave Device Designed to Preserve Cell Structure in Milliseconds

Published online by Cambridge University Press:  28 February 2011

Gary R. Login
Affiliation:
Department of Pathology, Harvard School of Dental Medicine, Boston, MA 02115 Departments of Pathology, Harvard Medical School, and Beth Israel Hospital, and the Charles A. Dana Research Institute, Boston, MA 02215
Susan Kissell
Affiliation:
Departments of Pathology, Harvard Medical School, and Beth Israel Hospital, and the Charles A. Dana Research Institute, Boston, MA 02215
Barbara K. Dwyer
Affiliation:
Department of Pathology, Harvard School of Dental Medicine, Boston, MA 02115
Ann M. Dvorak
Affiliation:
Departments of Pathology, Harvard Medical School, and Beth Israel Hospital, and the Charles A. Dana Research Institute, Boston, MA 02215
Get access

Abstract

We describe an innovative microwave instrument, designed in collaboration with and owned by Raytheon Company. The instrument permits the manipulation of biological specimens in their fluid milieu during the actual period of rapid tissue fixation. The specimen chamber is designed for sample containers up to 1.7 cm in diameter and 4.5 cm in height. Reflected power is reproducibly low, limiting the need for pretuning the microwave output to the sample. Microwave exposure can be controlled in 1 msecond increments with a range of 10 mseconds to 10 seconds. Mammalian cells and tissues fixed by this microwave device were evaluated by light and electron microscopy. Preliminary findings show large regions of excellent preservation in tissues and in cell suspensions in -100 mseconds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. 1989/1990 Handbook of Chemistry and Physics, 70th Edition, Eds. Weast, RC, Lide, DR, Astle, MJ, Beyer, WH (CRC Press, Inc, Boca Raton) (1989).Google Scholar
2. Berry, V.K., Modak, A.T., Stavinoha, W.T., In: 38th Annual Proceedings of the Electron Microscopy Society of America, Ed. GW, Bailey (1980), p. 516517.Google Scholar
3. Boon, M.E., Kok, L.P., Microwave cookbook of pathology. The art of microscopic visualization. 2nd ed., Eds. Boon, ME, Kok, LP (Coulomb Press, Leyden) (1988).Google Scholar
4. Butcher, S.H., Butcher, L.L., Jenden, D.J., J Microwave Power. 11, 6165 (1976).Google Scholar
5. Chen, K.C., Lin, C.J., J Microwave Power. 13, 251256 (1978).Google Scholar
6. Cleary, S.F., Liu, L., Cao, G., In Charge And Field Effects In Biosystems, Vol 2 in press, Eds. Allen, M, Cleary, S, Hawkridge, F (Plenum Press, New York) (1989).Google Scholar
7. Clegg, J.S., Drost-Hansen, W., DHEW publication 78-8055, Washington DC, FDA. 121131 (1978).Google Scholar
8. Committee on the Care and Use of Laboratory Animals of the Institute of Animal Resources, National Research Council. DHHS #86-23. (1985).Google Scholar
9. Constable, R.T., Dunscombe, P., Tsoukatos, A., Med Phys. 14, 385388 (1987).Google Scholar
10. Edgar, R.H., In Microwave Processing of Materials, Vol 124, Eds. Sutton, WH, Brooks, MH, Chabinsky, IJ (Mater. Res. Soc. Proc., Pittsburgh, PA) (1988), p. 379391.Google Scholar
11. Galvin, M.J., Ortner, M.J., Int J Radiat Biol. 39, 671675 (1981).Google Scholar
12. Grant, E.H., In Biomedical Thermology, Eds., Gautherie, M, Albert, E (Alan R. Liss, Inc., New York) (1982), p. 475484.Google Scholar
13. Hand, J.W., Phys Med Biol. 22, 981987 (1977).Google Scholar
14. Hand, J.W., Hume, S.P., Robinson, J.E., Marigold, J.C., Field, S.B., J Microwave Power. 14, 145149 (1979).Google Scholar
15. Hayat, M.A., Principles and Techniques of Electron Microscopy, Vol 1, (Van Nostrand Reinhold Company, New York) (1970), p. 593.Google Scholar
16. Hayat, M.A., In: Fixation for electron microscopy, Ed. MA, Hayat (Academic Press, Inc, New York) (1981), p. 1163.Google Scholar
17. Heuser, J.E., Reese, T.S., J Cell Biol. 88, 564580 (1981).Google Scholar
18. Hopwood, D., J Anat. 101, 8392 (1967).Google Scholar
19. Hopwood, D., Coghill, G., Ramsay, J., Milne, G., Kerr, M., Histochem J. 16, 11711191 (1984).Google Scholar
20. Ikarashi, Y., Maruyama, Y., Stavinoha, W.B., Japan J Pharmacol. 35, 371387 (1984).Google Scholar
21. Ikarashi, Y., Okada, M., Maruyama, Y., Brain Res. 373, 182188 (1986).Google Scholar
22. Ikarashi, Y., Sasahara, T., Maruyama, Y., J Neurochem. 45, 935939 (1985).Google Scholar
23. Irie, K., Nomoto, T., In: Advances in the Biosciences, Vol. 45, Eds. CL, Blank; Stavinoha, WB; Maruyama, Y (Pergamon Press, England) (1983), p. 8194.Google Scholar
24. Jensen, F.E., Harris, K.M., J Neurosci Methods. 29, 217230 (1989).Google Scholar
25. Johnson, C.C., Guy, A.W., Proceed IEEE. 60, 692718 (1972).Google Scholar
26. Jones, D.J., Medina, M.A., Ross, D.H., Stavinoha, W.B., Life Sci. 14, 15771585 (1974).Google Scholar
27. Jones, D.J., Stavinoha, W.B., In Neuropharmacology of Cyclic Nucleotides, Eds. Palmer, GC (Urban & Schwarzenberg, Baltimore) (1979), p. 253281.Google Scholar
28. Leong, A.S., Daymon, M.E., Milios, J., J Pathol. 146, 313321 (1985).Google Scholar
29. Lillie, R.D., Fullmer, H.M., In Histopatholoqic Technic and Practical Histochemistry, Fourth edition, Eds. Lillie, RD, Fullmer, HM (McGraw-Hill Book Company, New York) (1976).Google Scholar
30. Login, G.R., Am J Med Technol. 44, 435437 (1978).Google Scholar
31. Login, G.R., Dvorak, A.M., Am J Pathol. 120, 230243 (1985).Google Scholar
32. Login, G.R., Dvorak, A.M., Histochem J. 20, 373387 (1988).Google Scholar
33. Login, G.R., Galli, S.J., Morgan, E., Arizono, N., Schwartz, L.B., Dvorak, A.M., Lab Invest. 57, 592599 (1987a).Google Scholar
34. Login, G.R., Schnitt, S.J., Dvorak, A.M., Lab Invest. 57, 585591 (1987b).Google Scholar
35. Login, G.R., Stavinoha, W.B., Dvorak, A.M., J Histochem Cytochem. 34, 381387 (1986).Google Scholar
36. Login, G.R., Stavinoha, W.B., Dvorak, A.M., In Microwave Irradiation For Histological And Neurochemical Investigations, Eds., Blank, CL, Howard, S Maruyama, Y. (Soft Science Publications, Tokyo) (1989), p. 2753.Google Scholar
37. Maruyama, Y., Horikawa, A., Hosoya, E., J Microwave Power. 13, 5357 (1978).Google Scholar
38. McClean, V.E., Sheppard, R.J., Grant, E.H., J Microwave Power. 16, 17 (1981).Google Scholar
39. McLees, B.D., Finch, E.D., In Biological and Medical Physics, Vol. 14, Eds. Lawrence, JH & Gofman, JW (Academic Press, New York) (1973), p. 163223.Google Scholar
40. McRee, D., Walsh, P., Rev Sci Instruments. 42, 18601864 (1971).Google Scholar
41. Medina, M.A., Deam, A.P., Stavinoha, W.B., In Cerebral Metabolism and Neural Function, Eds. Passonneau, JV, Hawkins, RA, Welsch, FA, Lust, WD (Williams and Wilkins, New York) (1980), p. 5569.Google Scholar
42. Medina, M.A., Jones, D.J., Stavinoha, W.B., Ross, D.H., J Neurochem. 24, 223227 (1975).Google Scholar
43. Merritt, J.H., Frazer, J.W., J Microwave Power. 12, 133139 (1977).Google Scholar
44. Miller, T.M., Heuser, J.E., J Cell Biol. 98, 685698 (1984).Google Scholar
45. Modak, A.T., Weintraub, S.T., McCoy, T.H., Stavinoha, W.B., J Pharmacol Exp Ther. 197, 245252 (1976).Google Scholar
46. Moroji, T., Takahasi, K., Toishi, T., Arai, S., J Microwave Power. 12, 273286 (1977a).Google Scholar
47. Moroji, T., Takemura, M., Ogura, K., Toishi, T., Arai, S., J Microwave Power. 12, 4546 (1977b).Google Scholar
48. Mudgett, R.E., In Microwaves In The Food Processing Industry, Ed. Schweigert, BS (Academic Press, New York) (1985b), p. 3856.Google Scholar
49. Neas, E.D., Collins, M.J., In Introduction to Microwave Sample Preparation: Theory and Practice, Eds. Kingston, HM, Jassie, LB (American Chemical Society) (1988), p. 732.Google Scholar
50. Ni, C., Chang, T.C., Searl, S.S., Coughlin-Wilkinson, E., Albert, D.M., Ophthalmology. 88, 13721376 (1981).Google Scholar
51. Ohlsson, T., Risman, P.O., J Microwave Power. 13, 303310 (1978).Google Scholar
52. Ortner, M.J., Galvin, M.J., Cell Biophys. 2, 127138 (1980).Google Scholar
53. Partlow, L.M., Bush, L.G., Stensaas, L.J., Hill, D.W., Riazi, A., Gandhi, O.P., Bioelectromagnetics. 2, 123140 (1981).Google Scholar
54. Phillips, T.E., Boyne, A.F., J Electron Microscopy Tech. 1, 929 (1984).Google Scholar
55. Rabinowitz, J.R., Olcerst, R.B., Mumford, W.W., In: Symposium on Biological Effects and Measurement of Radiofreouency/microwaves. Vol. FDA 77-8026, (HEW, Rockville, MD) (1977), p. 216229.Google Scholar
56. Rohrer, M.D., Bulard, R.A., J Am Dent Assoc. 110, 194198 (1985).Google Scholar
57. Schmidt, M.J., Schmidt, D.E., Robison, G.A., Science. 173, 11421143 (1971).Google Scholar
58. Schneider, D.R., Felt, B.T., Goldman, H., J Neurochem. 38, 749752 (1982).Google Scholar
59. Stavinoha, W.B., In Microwave Fixation of Labile Metabolites Vol 45 Advances in the Biosciences, Blank, Cl, Stavinoha, WB, Maruyama, Y (Pergamon Press, England) (1983), p. 112.Google Scholar
60. Stavinoha, W.B., Frazer, J., Modak, A.T., In: Cholinerqic Mechanisms and Psychopharmacology, Ed. Jenden, DJ (Plenum Press, New York) (1977), p. 169179.Google Scholar
61. Stavinoha, W.B., Weintraub, S.T., Modak, A.T., J Neurochem. 20, 361371 (1973).Google Scholar
62. Straub, K.D., DHEW publication. 78-8055. Washington, DC, FDA., 35-42 (1978).Google Scholar
63. Stuchly, M.A., Stuchly, S.S., In: CRC Handbook of Biological Effects of Electromagnetic Fields, Eds., Polk, C, Postow, E (CRC Press, Boca Raton, Florida) (1986), p. 230272.Google Scholar
64. Terracio, L., Bankston, P.W., McAteer, J.A., Cryobiology. 18, 5571 (1981).Google Scholar
65. Walker, C.M., Huizinga, A.H., Voss, W.A., Tinga, W.R., J Microwave Power. 11, 2932 (1976).Google Scholar
66. Yonnone, M., In Microwave Processing of Materials, Vol 124, Eds. Sutton, WH, Brooks, MH, Chabinsky, IJ (Mater. Res. Soc. Proc., Pittsburgh, PA) (1988), p. 373377.Google Scholar