Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T08:43:56.206Z Has data issue: false hasContentIssue false

Novel Approaches to Linear Polyimides

Published online by Cambridge University Press:  15 February 2011

J. P. Marasco
Affiliation:
Laboratoire des Matériaux Organiques à Propriétés Spécifiques, UPR CNRS 9031, BP 24, 69390 Vernaison, France, lmops69@imaginate.fr
J. Garapon
Affiliation:
Laboratoire des Matériaux Organiques à Propriétés Spécifiques, UPR CNRS 9031, BP 24, 69390 Vernaison, France, lmops69@imaginate.fr
B. Sillion
Affiliation:
Laboratoire des Matériaux Organiques à Propriétés Spécifiques, UPR CNRS 9031, BP 24, 69390 Vernaison, France, lmops69@imaginate.fr
Get access

Abstract

Polyamic amides or polyamic esters are alternative polyimides precursors exhibiting a better storage-stability than classical polyamic acids. Two original synthetic routes to these polymers were investigated through either diisoimides and diimidazolides in order to enhance stability and to obtain pure para catenation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ting, C. H. and Seidel, T. E., in Low Dielectric Constant Materials, Synthesis and Applications in Microelectronics, edited by Lu, T. M., Murarka, S. P., Kuan, T. S. and Ting, C. H. (Mater. Res. Soc. Proc. 381, Pittsburg, PA, 1995), p. 9.Google Scholar
2. Feger, C. and Franke, H., in Polyirnides. Fundamentals and Applications, edited by Gosh, M. K. and Mittal, K. L. (Marcel Dekker, New-York, 1996), pp. 759814.Google Scholar
3. Saint-Clair, T. L., in Polyirnides, edited by Wilson, D., Stenzenberger, H. D. and Hergenrother, P. M. (Blackie, London, 1990), pp. 7476.Google Scholar
4. Sillion, B., Rabilloud, G., Garapon, J., Gain, O. and Vallet, J. in Low Dielectric Constant Materials. Synthesis and Applications in Microelectronics, edited by Lu, T. M., Murarka, S. P., Kuan, T. S. and Ting, C. H. (Mater. Res. Soc. Proc. 381, Pittsburg, PA, 1995), p. 93.Google Scholar
5. Carter, K.R., Cha, H. J., Dipietro, R. A., Hawker, C. J., Hedrick, J. L., Labadie, J. W., Mc Grath, J. E., Russel, T. P., Sanchez, M. I., Swanson, S. A., Volksen, W. and Yoon, D. Y. in Low Dielectric Constant Materials. Synthesis and Applications in Microelectronics, edited by Lu, T. M., Murarka, S. P., Kuan, T. S. and Ting, C. H. (Mater. Res. Soc. Proc. 381, Pittsburg, PA, 1995), p. 79.Google Scholar
6. Takekoshi, T. in Polyirnides. Fundamentals and Applications, edited by Gosh, M. K and Mittal, K. L. (Marcel Dekker, New-York, 1996), pp. 748.Google Scholar
7. Diaz de Toranzo, E. G. and Brieux, J. A., J. Med. Chem. 10, 982 (1967).Google Scholar
8. Ganin, E. V., Marakov, V. F. and Nikitin, V. I., Sov. Prog. Chem. (Engl. Transi.) 53(9), 74 (1987).Google Scholar
9. Likhachev, D. Y., Lavrov, S. V., Kardash, I. E. and Pravednikov, A. N., Vysokomol. Soedin., Ser. B 26, 123 (1984).Google Scholar
10. Marasco, J. P., Garapon, J. and Sillion, B., Polym. Bull. 35, 285 (1995).Google Scholar
11. Marasco, J. P., PhD Thesis, Lyon I University, N). 254–95, 1995.Google Scholar