Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T17:41:11.378Z Has data issue: false hasContentIssue false

Novel approaches of light management in thin-film silicon solar cells

Published online by Cambridge University Press:  01 February 2011

Janez Krc
Affiliation:
janez.krc@fe.uni-lj.si, University of Ljubljana, Faculty of Electrical Engineering, Dep. of Electronics, Trzaska 25, Ljubljana, N/A, 1000, Slovenia
M. Zeman
Affiliation:
m.zeman@tudelft.nl, Delft University of Technology - DIMES, Delft, N/A, P.O. Box 5053 2600 GB, Netherlands
A. Campa
Affiliation:
andrej.campa@fe.uni-lj.si, University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, Ljubljana, N/A, 1000, Slovenia
F. Smole
Affiliation:
franc.smole@fe.uni-lj.si, University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, Ljubljana, N/A, 1000, Slovenia
M. Topic
Affiliation:
marko.topic@fe.uni-lj.si, University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, Ljubljana, N/A, 1000, Slovenia
Get access

Abstract

In order to improve light trapping in thin-film silicon solar cells two novel approaches are investigated in this article: angle-selective management of light scattering inside the solar cell and wavelength-selective manipulation of high reflectance or transmittance of light. Diffraction gratings are analyzed as a representative of the first approach. Haze and angular distribution function of scattered (diffracted) light in reflection are measured for aluminum-based rectangular periodic gratings with different period and height of the rectangles. High haze values in specific wavelength region and scattering angles of the investigated gratings measured in air and water agree very well with the theoretical predictions. Considering the actual optical situation in microcrystalline silicon solar cells, optimal period and height of the rectangular gratings applied as a back reflector are calculated for obtaining the total reflection at the front interfaces. In the frame of the second approach, photonic-crystal-like structures are introduced. By means of optical simulations photonic-crystal-like structures are investigated for two possible applications: an intermediate reflector in a micromorph silicon solar cell with wavelength-selective reflectivity and a dielectric back reflector with a high reflectance in the long-wavelength region. The photonic crystal structure consisting of sequences of n-doped amorphous silicon and ZnO layers is designed for the efficient intermediate reflector. For the back reflector with a high reflectance the structures with intrinsic amorphous silicon, SiO2, MgF2 and TiO2 are proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Deckman, H.W., Wronski, C.R., Witzke, H., and Yablonovitch, E., Appl. Phys. Lett. 42 (11), (1983) 968.Google Scholar
2 Mueller, J., Rech, B., Springer, J., and Vanecek, M., Solar Energy, 77 (2004) 917.Google Scholar
3 Fay, S., Dubail, S., Kroll, U., Meier, J., Ziegler, Y., Shah, A., Proc. of the 16th EU PVSEC (2000), p. 361.Google Scholar
4 Kambe, M., Fukawa, M., Taneda, N., Yoshikawa, Y., Sato, K., Ohki, K., Hiza, S., Yamada, A. and Konagai, M., Proc. of WCPEC-3, Osaka, 2003, p.1812.Google Scholar
5 Hegedus, S. S., Kaplan, R., Progress in Photovoltaics 10 (2002), 257.Google Scholar
6 , Baneriee, Guha, S., J. Appl. Phys. 69 No. 2 (1991) 1030. Google Scholar
7 Shah, A. et al., J. Non-Cryst. Solids 338–340 (2004) 639.Google Scholar
8 Springer, J., Poruba, A., Muellerova, L., Vanecek, M., Kluth, O., and Rech, B., J. Appl. Phys. 95 No 3 (2004) 1427.Google Scholar
9 Eisele, C., C. E. Nebel and Stutzman, M., J. Appl. Phys., 89 No 12 (2001) 7722.Google Scholar
10 Stiebig, H., Senoussaoui, N., Zahren, C., Hasse, C. and Mueller, J., Prog. in Photovolt. 14 (2006) 13.Google Scholar
11 Terrazzoni, V.-Daudrix, Guillet, J., Niquille, X., Feitknecht, L., Freitas, F., Winkler, P., Shah, A., Morf, R., Parriaux, O. and Fischer, D., Proc. of WCPEC-3, Osaka, 2003, p. 1596.Google Scholar
12 Beckmann, P. and Spizzichino, A., The scattering of electromagnetic waves from rough surfaces, Pergamon Press, 1963.Google Scholar
13 http://ab-initio.mit.edu/photons/tutorial/Google Scholar
14 Lee, H.Y. and Yao, T., J. Appl. Phys. 93 No. 2 (2003) 812. Google Scholar
15 Lee, H.Y. et al., J. Appl. Phys. 97 (2005) 103111–1.Google Scholar
16 Zeng, L., Yi, Y., Hong, C., Duan, X. and Kimerling, L. C., Mater. Res. Soc. Symp. Proc. Vol. 862, 2005, A12.3.1. Google Scholar
17 Fischer, D. et al., Proc. of 25th IEEE PVSC, Washington, DC, 1996, p. 1053.Google Scholar
18 Yamamoto, K. et al., Solar Energy Mat. & Solar Cells 74 (2002) 449.Google Scholar
19 Rech, B., Kluth, O., Repmann, T., Roschek, T., Huepkes, J., Mueller, J., Proc. of WCPEC-3, Osaka, 2003, p. 2783.Google Scholar
20 Krc, J., Smole, F., Topic, M., Prog. in Photovolt: Res. Appl. 11 (2003) 15.Google Scholar
21 Zeman, M., Swaaij, R.A.C.M.M. van, Metselaar, J.W., and Schropp, R.E.I., J. Appl. Phys. 88 (2000) 6436.Google Scholar
22 Krc, J., Smole, F., Topic, M., Solar nergy Mat. and Solar Cells 86 (2005) 537.Google Scholar
23 Brammer, T., Huepkes, J., Krause, M., Kluth, O., Mueller, J., Stiebig, H. and Rech, B., Proc. of WCPEC-3, Osaka, 2003, p. 176.Google Scholar