Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-19T03:24:53.917Z Has data issue: false hasContentIssue false

Novel Applications of Rapid Thermal Chemical Vapor Deposition for Nanoscale MOSFET’s

Published online by Cambridge University Press:  10 February 2011

J. C. Sturm
Affiliation:
Center for Photonics and Optoelectronic Materials, Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
M. Yang
Affiliation:
Center for Photonics and Optoelectronic Materials, Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
C. L. Chang
Affiliation:
Center for Photonics and Optoelectronic Materials, Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
M. S. Carroll
Affiliation:
Center for Photonics and Optoelectronic Materials, Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
Get access

Abstract

In this paper we examine several applications of Rapid Thermal Chemical Vapor Deposition (RTCVD) for the fabrication of sub-100 rum MOSFET's. Vertical dual-gated MOSFET’s are used as a test vehicle to implement FET's of very short channel length. To realize such devices, the ability of epitaxial Si1-x-y, GexCy layers for suppressing the thermal diffusion, transient enhanced diffusion, and oxidation enhanced diffusion of boron both in the Si1-x-y, GexCy and in nearby Si layers is very useful Novel gate electrodes deposited by RTCVD also showed the ability to greatly reduce boron penetration in ptype polycrystalline gates for p-channel FET’s.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. King, C.A., Hoyt, J.L., Gronet, C.M., Gibbons, J.F., Scott, M.P., and Turner, J., IEEE Elec. Dev. Lett. 10, 52 (1989).Google Scholar
2. Sturm, J.C., Gronet, C.M., King, C.A., Wilson, S.D., and Gibbons, J.F., IEEE Elec. Dev. Lett. 7, 577 (1986).Google Scholar
3. King, T-J., Pfiester, J.R., Shott, J.D., McVittie, J.P., and Saraswat, K.C., Tech. Dig. IEDM, 253 (1990).Google Scholar
4. Cao, M., Wang, A., and Saraswat, K., J. Electrodchem. Soc. 142, 1566, (1995).Google Scholar
5. Grider, D.T., Ozturk, M. C., Ashburn, S. P., Wortman, J. J., Harris, G., and Maher, D., J. Elec. Mat. 24, 1369 (1995)Google Scholar
6. Garone, P.M., Venkataraman, V., and Sturm, J.C., IEEE Elec. Dev. Lett. 13, 56 (1992).Google Scholar
7. Ismail, K., Meyerson, B.S., Rishton, S., Chu, J., Nelson, S., and Nocera, J., IEEE Elec. Dev. Lett. 13, 229 (1992).Google Scholar
8. Stolk, P.A., Eaglesham, D.J., Gossman, H.-J., and Poate, J.M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
9. Stolk, P.A., Gossmann, H.J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, J., Poate, J.M, Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).Google Scholar
10. Nishikawa, S., Tanaka, A., and Yamaji, T., AppL Phys. Lett. 60, 2270, (1992).Google Scholar
11. Ban, I., Ozturk, M.C., Demirlioglu, E.K., IEEE Trans. Elec. Dev. 44, 1544 (1997)Google Scholar
12. Regolini, J.L., Gisbert, F., Dolino, G., and Boucaud, P., Materials Lett. 18, 57 (1993).Google Scholar
13. Amour, A. St., Liu, C.W., Sturm, J.C., LaCroix, Y. and Thewalt, M.L.W., Appl. Phys. Lett. 67, 3915 (1995).Google Scholar
14. Chang, C.L., Amour, A. St., and Sturm, J.C., Tech. Dig. Int. Elec. Dev. Mtg, 257 (1996).Google Scholar
15. Liu, C.W., Amour, A. St., Sturm, J.C., Lacroix, Y.R.J., Thewalt, M.L.W., Magee, C.W., and Eaglesham, D., J. AppL Phys. 80, 3043 (1996).Google Scholar
16. Lanzerotti, L.D., Sturm, J.C., Stach, E., Hull, R., Buyuklimanli, T. and Magee, C., Appl. Phys. Lett. 70, 3125 (1997).Google Scholar
17. Frank, D., Laux, S.E., and Fischetti, M.V., Tech. Dig. IEDM, 553 (1992).Google Scholar
18. Chang, C.L. and Sturm, J.C., Proc. Symp. Mat. Res. Soc. 525, to be published (1998).Google Scholar