Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-06T05:48:36.704Z Has data issue: false hasContentIssue false

Novel Antimony Precursors for Low-Temperature CVD of Antimonide Thin Films

Published online by Cambridge University Press:  10 February 2011

Michael A. Todd
Affiliation:
Advanced Technology Materials, Inc, ADCS Division 7 Commerce Dr., Danbury, CT 06810, USA
Gautam Bhandari
Affiliation:
Advanced Technology Materials, Inc, ADCS Division 7 Commerce Dr., Danbury, CT 06810, USA
T. H. Baum
Affiliation:
Advanced Technology Materials, Inc, ADCS Division 7 Commerce Dr., Danbury, CT 06810, USA
Get access

Abstract

Volatile antimony precursors were synthesized for the low temperature chemical vapor deposition (CVD) of antimony thin films. The molecules synthesized include tris (trifluoromethyl)stibine, Sb(CF3)3, Lewis base adducts of Sb(CF3)3, and antimony trihydride (stibine), SbH3. Isotopie substitution of stibine with deuterium leads to a more thermally stable, carbon-free antimony source. Similarly, deuterium substitution of trimethylsilylmethyl antimony dihydride leads to a stabilized liquid antimony precursor. The molecules were characterized using FTIR, NMR and DSC / TGA. Pure antimony films were deposited at temperatures below 300 °C with growth rates approaching 170 Å / min using a low pressure hot-wall CVD reactor. The films were characterized using XRD, EDS, SEM and AFM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, R.Q., Yang, B.H., Zhang, D., Lin, C.H., Murry, S.J., Wu, H., and Pei, S.S.. Appl. Phys. Lett. 71(17), p. 2409 (1997).Google Scholar
2. Bocci, C., Bosacchi, A., Franchi, S., Gennari, S., Magnanini, R. and Drigo, A.V.. Appl. Phys. Lett. 71(11), p. 1549 (1997).Google Scholar
3. Huang, K.T., Chiu, C.T., Cohen, R.M., and Stringfellow, G.B.. J. Appl. Phys. 75, 2857 (1997).Google Scholar
4. kim, J.D., Wu, D., Wojkowski, J., Piotrowski, J., Bigan, E. and Razeghi, M.. Appl. Phys. Lett. 68, p. 99(1996).Google Scholar
5. Yang, R.Q. and Pei, S.S.. J. Appl. Phys. 79, 8197 (1996).Google Scholar
6. Johnson, A.D.. 1996 Electronic Materials Conference, Session U: Antimonide Based Infrared Materials, Paper U4.Google Scholar
7. Rybaltowski, A., Xiao, Y., Wu, D., Lane, B., Yi, H., Feng, H., Diaz, J. and Razeghi, M.. Appl. Phys. Lett. 71(17), p. 2430 (1997).Google Scholar
8. Razeghi, M., Yi, H., and Litvinov, V.. (unpublished results).Google Scholar
9. Lin, C.H., Chang, P.C., Murray, S.J., Zhang, D., Yang, R.Q., and Pei, S.S.. 1996 Electronic Materials Conference, Session U: Antimonide Based Infrared Materials, Paper U2.Google Scholar
10. Rybaltowski, A., Xiao, Y., Wu, D., Lane, B., Yi, H., Feng, H., Diaz, J. and Razeghi, M.. Appl. Phys. Lett. 71(17), p. 2430 (1997).Google Scholar
11. Yang, R.Q., Yang, B.H., Zhang, D., Lin, C.H., Murry, S.J., Wu, H., and Pei, S.S.. Appl. Phys. Lett. 71(17), p. 2409 (1997).Google Scholar
12. Lane, B., Wu, D., Rybaltowski, A., Yi, H., Diaz, J. and Razeghi, M., Appl. Phys. Lett. 70, p. 443 (1997).Google Scholar
13. Rybaltowski, A., Xiao, Y., Wu, D., Lane, B., Yi, H., Feng, H., Diaz, J. and Razeghi, M.. Appl. Phys. Lett. 71(17), p. 2430 (1997).Google Scholar
14. Dale, J.W., Emelius, H.J., Hazeldine, R.N. and Moss, J.H.. J. Am. Chem. Soc. 730, p. 3708 (1957).Google Scholar
15. Hendershot, D.G. and Berry, A.D.. J. Organomet. Chem. 119, p. 119 ( 1993).Google Scholar