Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-19T08:21:53.419Z Has data issue: false hasContentIssue false

Nonvolatile, Reversible Writing of Electronic Nanostructures in Epitaxial Ferroelectric / Metallic Oxide Heterostructures using a Field Effect

Published online by Cambridge University Press:  10 February 2011

C. H. Ahn
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
T. Tybell
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
L. Antognazza
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
K. Char
Affiliation:
Conductus Inc., 969 W. Maude Ave., Sunnyvale, CA 94086, USA
R. H. Hammond
Affiliation:
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
M. R. Beasley
Affiliation:
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
Ø. Fischer
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
J.-M. Triscone
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
Get access

Abstract

Using scanning probe microscopy, we have written nonvolatile electronic nanofeatures in the metallic perovskite oxide SrRuO3. The structures were written in epitaxial thin film Pb(Zr0.52Ti0.48)O3 (PZT) / SrRuO3 heterostructures by locally switching the polarization field of the ferroelectric PZT layer with an atomic force microscope (AFM). The resulting field effect changes the sheet resistance of the SrRuO3 layer by up to 300 ohms per square. Using the AFM as an electric field microscope, it is also possible to visualize the charge distribution of the written areas on the PZT surface. Large areas of up to 100 μm2 have been polarized and imaged with submicrometer resolution, with the smallest features having linewidths of 170 nm. This approach to local electronic doping is reversible and allows one to write nonvolatile submicron electronic features in two dimensions without lithographic steps or permanent electrical contacts required.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RFERENCES

1. Ramesh, R., Inam, A., Chan, W.K., Wilkens, B., Myers, K., Remschnig, K., Hart, D.L., and Tarascon, J.M., Science 252, 944 (1991);Google Scholar
Eom, C.B., Van Dover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993);Google Scholar
Ahn, C.H., Triscone, J.-M., Archibald, N., Decroux, M., Hammond, R.H., Geballe, T.H., Fischer, Ø., and Beasley, M.R., Science 269, 373 (1995);Google Scholar
2. Ahn, C.H., Hammond, R.H., Geballe, T.H., Beasley, M.R., Triscone, J.-M., Decroux, M., Fischer, Ø., Antognazza, L., and Char, K., Appl. Phys. Lett. 70, 206 (1997).Google Scholar
3. Ahn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, Ø., and Triscone, J.-M., Science 276, 1100 (1997).Google Scholar
4. Triscone, J.-M., Frauchiger, L., Decroux, M., Miéville, L., and Fischer, Ø., Beeli, C., and Stadelmann, P., Racine, G.-A., J. Appl. Phys. 79, 4298 (1996).Google Scholar
5. Ahn, C.H., Klein, L., Reiner, J.W., Hammond, R.H., Geballe, T.H., Beasley, M.R., Triscone, J.-M., Decroux, M., and Fischer, Ø., submitted for publication.Google Scholar
6. Stern, J. E., Terris, B. D., Mamin, H. J., and Rugar, D., Appl. Phys. Lett. 53, 2717 (1988);Google Scholar
Saurenbach, F. and Terris, B. D., Appl. Phys. Lett. 56, 1703 (1990);Google Scholar
Lüthi, R., Haefke, H., Meyer, K.-P., Meyer, E., Howald, L., and Güntherodt, H.-J., J. Appl. Phys. 74, 7461 (1993);Google Scholar
Tybell, T., Ahn, C.H., and Triscone, J.-M., in preparationGoogle Scholar
7. The parameters necessary to polarize ferroelectric domains were established by writing an area of the film with the AFM tip while ramping the voltage applied to the tip continuously from -10 V to +10 V. The resulting phase image reveals the required coercive voltage (∼4-5 V) to polarize ferroelectric domains.Google Scholar
8. See, for example, Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L.A., Hiskes, R., Dicarolis, S.A., and Amano, J., Appl. Phys. Lett. 68, 2358 (1996) and REFERENCES therein;Google Scholar
Zavala, G., Fendler, J.H., Trolier-McKinstry, S., J. Appl. Phys. 81, 7480(1997).Google Scholar
9. Tybell, T., Ahn, C.H., and Triscone, J.-M., in preparation.Google Scholar