Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-16T17:53:57.371Z Has data issue: false hasContentIssue false

Non-Standard Fickian Self-Diffusion of Isotopically Pure Boron Observed by Neutron Reflectometry and Depth Profiling

Published online by Cambridge University Press:  22 February 2011

Shenda M. Baker
Affiliation:
Dept. of Chemistry, Harvey Mudd College, Claremont, CA 91711;
K. Wu
Affiliation:
Dept. of Chemistry, Harvey Mudd College, Claremont, CA 91711;
G. S. Smith
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545;
K. M. Hubbard
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545;
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545;
R. G. Downing
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
G. P. Lamaze
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

Neutron reflectometry (NR) studies1 of thin films of amorphous 11B/l0B on silicon indicate that a non-standard form of Fickian diffusion occurs across the boron interface upon annealing. In order to verify this observation, the samples were examined by neutron depth profiling (NDP). Comparison of the results from models of a step function, standard Fickian diffusion and Fickian diffusion with a fixed composition at the interface were made and compared to the previous NR results. The diffusion constant resulting from the non-standard Fickian model for the NDP data differs slightly from that obtained from the commonly used Fickian diffusion model and is not inconsistent with the NR results. This finding suggests that more information regarding diffusion at interfaces can be gained from these higher resolution neutron scattering techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Baker, S. M., Smith, G. S., M.Hubbard, K., Nastasi, M., and Hirvonen, J-P. ‘Observation of Non-Standard Fickian Diffusion of Isotopically Pure 11B/10B Interface on Silicon Submitted to Phys.Rev. BGoogle Scholar
2 See, Choi, C.S., Ruggles, G. A., Ahah, A. S., Xing, G. C., Osburn, C. M. and Humm, J. D., J. Electrochem. Soc. 138 (10), 3062 (1991)Google Scholar
3 Kaloyeros, A., Hoffman, M., and Williams, M.S., Thin Solid Films, 14, 237 - 250 (1986).Google Scholar
4 Pierson, H.O., and Mulendore, A.W., Thin Solid Films, 95, 99 - 104,1(1982).Google Scholar
5 Smith, G. S., Hamilton, W., Fitzsimmons, M., Baker, S. M., Hubbard, K. M., Nastasi, M., Hirvonen, J-P. and Thomas, G. Zocco Proc. of the Internat. Soc. for Optical Engineering 1992. San Diego, July 22 - 24 Google Scholar
6 La Via, F., Janssen, K. G. F. and Reader, A. H., Appl. Phys Lett. 60(6), 701 - 703 (1992).Google Scholar
7 Crank, J. The Mathematics of Diffusion (Oxford University Press; Briston, 1975).Google Scholar
8 Rowe, J.M., NIST J. of Res. 98 ,1 (1993).Google Scholar
9 Lamaze, G.P., Downing, R.G., Langland, J.K. and Hwang, S.T., NIST J. of Res. 98 (1993)109 Google Scholar
10 Ziegler, J.F., Cole, G.W., and Baglin, J.E.E.. J. Appl. Phys. 43 (1972) 3809.Google Scholar
11 Ziegler, J.F.. “The Stopping and Ranges of Ions in Matter” Pergamon Press Inc.: New York, 1977.Google Scholar
12 Biersack, J.P., Fink, D., Lauch, J., Henkelmann, R. and Muller, K.. Nucl. Inst. and Meth. 188 (1981) 411.Google Scholar
13 Janni, J.F.. Atomic Data and Nuclear Data Tables 27 (1982) 147.Google Scholar
14 Ziegler, James F., IBM Research, Yorktown, NY 10598Google Scholar
15 Gupta, D., Mat. Res Soc. Sym. Proc, 47 (1985), 11 - 26, Materials Research SocietyGoogle Scholar
16 Cantor, B. and Cahn, R.W., “Atomic Diffusion in Amorphous Alloys,” Amorphous Metallic Alloys, ed. Luborsky, F.E., Butterworths, London, 1983 Google Scholar
17 Muetterities, E. L., The Chemistry of Boron and its Compounds (Wiley, New York, 1967), 29 - 52.Google Scholar
18 Hanley, L., Whitten, J. L. and Anderson, S. L., J. Phys. Chem 92, 5803 (1992).Google Scholar
19 Kawai, R. and Weare, j. H., J. Chem. Phys. 95 (2), 1151 (1991)Google Scholar
20 Jost, W., Diffusion in Solids. Liquids and Gases. (Academic Press Inc., New York, 1960), 20 - 27.Google Scholar
21 VerHoeven, J. D., Fundamentals of Physical Metallurgy. (J. Wiley and Sons, New York, 1975), Ch. 6.Google Scholar