Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T02:35:42.392Z Has data issue: false hasContentIssue false

Nonlinear magneto-optics in garnet magnetophotonic crystals

Published online by Cambridge University Press:  01 February 2011

O.A. Aktsipetrov
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
T.V. Dolgova
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
A.A. Fedyanin
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
R.V. Kapra
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
T.V. Murzina
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
M. Inoue
Affiliation:
Toyohashi University of Technology, 441–8580 Toyohashi, Japan
T. Yoshida
Affiliation:
Toyohashi University of Technology, 441–8580 Toyohashi, Japan
D. Kobayashi
Affiliation:
Toyohashi University of Technology, 441–8580 Toyohashi, Japan
K. Nishimura
Affiliation:
Toyohashi University of Technology, 441–8580 Toyohashi, Japan
H. Uchida
Affiliation:
Toyohashi University of Technology, 441–8580 Toyohashi, Japan
Get access

Abstract

In this paper the results of our recent studies of the magnetization-induced nonlinear optical second-order and third-order effects in magnetophotonic crystals and magnetophotonic microcavities are surveyed.

Nonlinear magneto-optical Kerr effect (NOMOKE) both in magnetization-induced second-harmonic generation (MSHG) and magnetization-induced third-harmonic generation (MTHG) is observed in garnet MMC at wavelengths of the resonant microcavity modes. Magnetization-induced variations of MSHG and MTHG intensity as well as magnetization-induced shift of phase and rotation of polarization of second-harmonic and third-harmonic waves are observed in proper - transversal, longitudinal or polar - NOMOKE configurations.

Nonlinear magneto-optical Kerr effect in MSHG intensity is observed in garnet magnetophotonic crystals in the spectral range of photonic band gap (PBG) edges of MPC.The MSHG intensity reveals enhancement by a factor of more than 102 if the fundamental wavelength is tuned in the vicinity of the PBG edge. This enhancement is attributed to the fulfilment of the phase matching conditions for MSHG effect in layered structures with periodic modulation of both optical (magneto-optical) and nonlinear optical parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sakoda, K., Optical Properties of Photonic Crystals (Springer, Berlin, 2001).Google Scholar
2 Scalora, M., Bloemer, M. J., Manka, A. S., Dowling, J. P., Bowden, C. M., Viswanathan, R., and Haus, J. W., Phys. Rev. A 56, 31663174 (1997).Google Scholar
3 Bloembergen, N. and Sievers, J., Appl. Phys. Lett. 17, 483485 (1970).Google Scholar
4 van der Ziel, J. P. and Ilegems, M., Appl. Phys. Lett. 28, 437439 (1976).Google Scholar
5 Dumeige, Y., Vidakovic, P., Sauvage, S., Sagnes, I., Levenson, J. A., Sibilia, C., Centini, M., D'Aguanno, G., and Scalora, M., Appl. Phys. Lett. 78, 30213023 (2001).Google Scholar
6 Balakin, A. V., Bushuev, V. A., Koroteev, N. I., Mantsyzov, B. I., Ozheredov, I. A., Shkurinov, A. P., Boucher, D., and Masselin, P., Opt. Lett. 24, 793795 (1999).Google Scholar
7 Dolgova, T. V., Maidykovski, A. I., Martemyanov, M. G., Fedyanin, A. A., Aktsipetrov, O. A., Marowsky, G., Yakovlev, V. A., and Mattei, G., Appl. Phys. Lett. 81, 27252727 (2002).Google Scholar
8 Trull, J., Vilaseca, R., Martorell, J., and Corbalan, R., Opt. Lett. 20, 17461748 (1995).Google Scholar
9 Cao, H., Hall, D., Torkelson, J., and Cao, C.–Q., Appl. Phys. Lett. 76, 538540 (2001).Google Scholar
10 Lettieri, S., Finizio, S. D., Maddalena, P., Ballarini, V., and Giorgis, F., Appl. Phys. Lett. 81, 47064708 (2002).Google Scholar
11 Dolgova, T. V., Maidykovski, A. I., Martemyanov, M. G., Fedyanin, A. A., Aktsipetrov, O. A., Schuhmacher, D., Marowsky, G., Yakovlev, V.A., Mattei, G., Ohta, N., and Nakabayashi, S., J. Opt. Soc. Am. B 19, 21292140 (2002).Google Scholar
12 Aktsipetrov, O. A., Braginskii, O. V., and Esikov, D. A., Sov. J. Quantum Electron. 20, 259263 (1990).Google Scholar
13 Aktsipetrov, O. A., Braginskii, O. V., and Esikov, D. A., in Proceedings of ICONO-13, Minsk, USSR 2, 142 (1988).Google Scholar
14 Reif, J., Zink, J. C., Schneider, C.-M., and Kirschner, J., Phys. Rev. Lett. 67, 28782881 (1991).Google Scholar
15 Reif, J., Rau, C., and Matthias, E., Phys. Rev. Lett. 71, 19311934 (1993).Google Scholar
16 Spierings, G., Koutsos, V., Wierenga, H. A., Prins, M. W. J., Abraham, D., and Rasing, T., Surf. Sci. 287–288, 747749 (1993).Google Scholar
17 Spierings, G., Koutsos, V., Wierenga, H. A., Prins, M. W. J., Abraham, D., and Rasing, T., J. Magn. Magn. Mater. 121, 109111 (1993).Google Scholar
18 Murzina, T., Ganshina, E., Guschin, V. S., Misuryaev, T. V., and Aktsipetrov, O. A., Appl. Phys. Let. 73, 37693771 (1998).Google Scholar
19 Murzina, T. V., Misuryaev, T. V., Kravets, A. F., Güdde, J., Schuhmacher, D., Marowsky, G., Nikulin, A. A., and Aktsipetrov, O. A., Surf. Sci. 482–485, 11011106 (2001).Google Scholar
20 Fedyanin, A. A., Yoshida, T., Nishimura, K., Marowsky, G., Inoue, M., and Aktsipetrov, O. A., JETP Lett. 76, 527531 (2002).Google Scholar
21 Fedyanin, A. A., Yoshida, T., Nishimura, K., Marowsky, G., Inoue, M., and Aktsipetrov, O. A., J. Magn. Magn. Mater. 258–259, 9698 (2003).Google Scholar
22 Murzina, T. V., Kapra, R. V., Rassudov, A. A., Aktsipetrov, O. A., Nishimura, K., Uchida, H., and Inoue, M., JETP Lett. 77, 537540 (2003).Google Scholar
23 Lazarenko, S. V., Kirilyuk, A., Rasing, T., and Lodder, J. C., J. Appl. Phys. 93, 79037905 (2003).Google Scholar
24 Lyubchanskii, I. L., Dadoenkova, N. N., Lyubchanskii, M. I., Shapovalov, E. A., and Rasing, T., J. Phys. D: Appl. Phys. 36, R277–R287 (2003).Google Scholar
25 Inoue, M., Arai, K., Fujii, T., and Abe, M., J. Appl. Phys. 85, 57685770 (1999).Google Scholar
26 Takeda, E., Todoroki, N., Kitamoto, Y., Abe, M., Inoue, M., Fujii, T., and Arai, K., J. Appl. Phys. 87, 67826784 (2000).Google Scholar
27 Yoshida, T., Nishimura, K., Uchida, H., and Inoue, M., J. Appl. Phys. 93, 69426944 (2003).Google Scholar
28 Fedyanin, A. A., Aktsipetrov, O. A., Kobayashi, D., Nishimura, K., Uchida, H., and Inoue, M., J. Magn. Magn. Mater. 282, 256 (2004).Google Scholar
29 Murzina, T., Dolgova, T., Kapra, R., Fedyanin, A., Aktsipetrov, O., Nishimura, K., Uchida, H., and Inoue, M., Phys. Rev. B 70, 012407 (2004).Google Scholar
30 Kemnitz, K., Bhattacharyya, K., Hicks, J., Pinto, G., Eisenthal, K., and Heinz, T., Chem. Phys. Lett. 131, 285288 (1986).Google Scholar
31 Dolgova, T., Fedyanin, A., Nishimura, O. A. K., Uchida, H., and Inoue, M., J. Appl. Phys. 95, 7330 (2004).Google Scholar