Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T12:43:24.102Z Has data issue: false hasContentIssue false

Nonlinear Absorption in Organic Dyes

Published online by Cambridge University Press:  15 February 2011

K. R. Welford
Affiliation:
DRA, St. Andrews Road, Malvern, Worcestershire, WR14 3PS, UK
S. N. R. Swatton
Affiliation:
DRA, St. Andrews Road, Malvern, Worcestershire, WR14 3PS, UK
S. Hughes
Affiliation:
Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, UK
S. J. Till
Affiliation:
DRA, St. Andrews Road, Malvern, Worcestershire, WR14 3PS, UK
G. Spruce
Affiliation:
Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, UK
R. C. Hollins
Affiliation:
DRA, St. Andrews Road, Malvern, Worcestershire, WR14 3PS, UK
B. S. Wherrett
Affiliation:
Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, UK
Get access

Abstract

The non-linear optical properties of chloro-aluminium phthalocyanine and 1,3,3,1′,3′,3′- hexamethylindotricarbocyanine have been studied as model systems using z-scan and time resolved experimental techniques. Excited state lifetimes and absorption cross sections have been measured as well as the spectral response of the induced absorption. Excited state lifetimes are critical in determining the performance of a reverse saturable absorber. Even though a first excited state absorption cross section may be large compared with the ground state absorption cross section the lifetimes and transition probabilities of higher lying states can lead to constraints upon how effective organic dyes are as optical limiting materials.

Both novel saturation of the induced absorption at high laser fluences and intermolecular quantum beats in 1,3,3, 1′,3′,3′-hexamethylindotricarbocyanine are demonstrated experimentally and accounted for theoretically. Quantum chemical calculations have been developed to propose a probable inter-molecular mechanism for the observed quantum beats.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Giuliano, C.R. and Hess, L.D., IEEE J. Quantum Electronics QE–3, 358 (1967)Google Scholar
2. Bezrondnyi, V.I., Przhonskaya, O.V., Tikhonov, E. A., and Shpak, M.T., Soy. Phys. JEPT 53, 259(1981)Google Scholar
3. Bondar, M.V., Przhonskaya, O.V., and Tikhonov, E. A., Opt. Spectrosc. (USSR) 72, 41 (1992)Google Scholar
4. Si, J., Yang, M., Wang, Y., Zhang, L., Li, C., Wang, D., Dong, S., and Sun, W., Appl. Phys. Lett. 64, 3083 (1994)Google Scholar
5. Shank, C.V., Ippen, E. P., and Teschke, O., Chem. Phys. Letts 45, 291 (1977)Google Scholar
6. Muller, A., Schulz-Hennig, J., and Tashiro, H., Appl. Phys. 12, 333 (1977)Google Scholar
7. Kobayahsi, T. and Nagakura, S., Chem. Phys. 23, 153 (1977)Google Scholar
8. Coulter, D.R., Miskowski, V.M., Perry, J.W., Wei, T.H., Van Stryland, E.W. and Hagan, D.J., SPIE 1105, 42 (1989)Google Scholar
9. Tutt, L.W. and Kost, A., Nature 356, 225 (1992)Google Scholar
10. Wei, T.H., Hagan, D.J., Sence, M.J., Van Stryland, E.W., Perry, J.W., and Coulter, D.R., Appl. Phys B54, 46 (1992)Google Scholar
11. Swatton, S.N.R., DRA(Malvern) private communication (1994)Google Scholar
12. Hughes, S., PhD thesis, Heriot-Watt University, Scotland, 1994 Google Scholar
13. Hughes, S., Spruce, G., Wherrett, B.S., Welford, K.R., and Lloyd, A.D., Opt. Comms. 100, 113 (1993)Google Scholar
14. Zhu, X.R. and Harris, J.M., J. Chem. Phys. 142, 301 (1990)Google Scholar
15. Ivri, J., Burshtein, Z. and Miran, E., Appl. Optics 30, 2484 (1990)Google Scholar
16. Swatton, S.N.R., Welford, K.R. and Sambles, J.R., Appl. Phys. Letts. submitted, (1994)Google Scholar
17. Swatton, S.N.R., Welford, K.R. and Till, S.J., Opt. Comms, submitted, (1994)Google Scholar
18. Brannon, J.H. and Madge, D., J. Am. Chem. Soc. 102, 62 (1980)Google Scholar
19. O'Keefe, G. and Phillips, R.T., Cambridge University, DRA Report (1994)Google Scholar
20. Boeijj, W De, Pshenichnikov, M., Duppen, K., and Wiersma, D., Chem. Phys. Lett. 224, 243 (1994)Google Scholar
21. Cong, P., Deuel, H., and Simon, J., Chem. Phys. Lett. 212, 367 (1994)Google Scholar
22. Rosker, M.J., Wise, F.W. and Tang, C.L., Phys. Rev. Letts. 57, 321 (1986)Google Scholar
23. Wise, F.W., Rosker, M.J. and Tang, C.L., J. Chem. Phys. 86, 2827 (1987)Google Scholar
24. Till, S.J., DRA(Malvern) private communication (1994)Google Scholar
25. Hagan, D.J., Xia, T., Said, A.A., Wei, T.H., and Van Stryland, E.W., International Journal of Optical Physics 2, 483 (1993)Google Scholar
26. McCahon, S.W. and Tutt, L.W., Patent WO/91/14411 (3 October 1991)Google Scholar
27. Miles, P.A., Appl. Opt. 33, 6965 (1994)Google Scholar
28. Kolinsky, P. V., Hall, S.R., Venner, M.R.W., Croxall, D.F., Welford, K.R., and Swatton, S.N.R., Material for Optical Limiting, edited by R., Crane, K.L., Lewis, E.W., Van Stryland, and M., Khoshnevisan ( Mater. Res. Soc. Proc. 1994)Google Scholar
29. McGeoch, S.P., Christie, A., Bahra, G.S., and Welford, K.R., Material for Optical Limiting, edited by R., Crane, K.L., Lewis, E.W., Van Stryland, and M., Khoshnevisan (Mater. Res. Soc. Proc. 1994)Google Scholar