Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-17T14:15:21.985Z Has data issue: false hasContentIssue false

Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double delta-doped quantum well in GaAs with a Schottky barrier potential.

Published online by Cambridge University Press:  18 December 2012

J. G. Rojas-Briseño
Affiliation:
Unidad Académica de Física. Universidad Autónoma de Zacatecas. Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. México
J. C. Martínez-Orozco
Affiliation:
Unidad Académica de Física. Universidad Autónoma de Zacatecas. Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. México
I. Rodríguez-Vargas
Affiliation:
Unidad Académica de Física. Universidad Autónoma de Zacatecas. Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. México
C. A Duque
Affiliation:
Instituto de Física, Universidad de Antioquia, AA 1226, Medellín, Colombia
M. E. Mora-Ramos
Affiliation:
Instituto de Física, Universidad de Antioquia, AA 1226, Medellín, Colombia Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, C.P. 62209, Cuernavaca, Morelos, México
Get access

Abstract

Semiconductor devices have been improved by using delta-doped quantum well (DDQW) of impurities due to the great amount of charge carriers it provides. The first proposals consisted of a DDQW close to the Schottky barrier potential in the gate terminal in a FET [1]. In this work we reported the energy levels spectrum for n-type double-DDQW with a Schottky barrier (SB) at their neighborhood in a Gallium Arsenide (GaAs) matrix. In addition to consider only the linear optical approximation we take into account the third order correction to the absorption coefficient and the refractive index change. We report those properties as a function of the Schottky Barrier Height (SBH), several separation distances between the DDQWs, and hydrostatic pressure effects. The results shown that the magnitude of intensity resonance peaks are controlled by the asymmetry of the DDQW+SB.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Döhler, G. H., Surf. Sci. 73, 97 (1978).CrossRefGoogle Scholar
Wood, C. E., Metze, G., Berry, J. and Eastman, L. F., J. Appl. Phys. 51, 583 (1980).Google Scholar
Zachau, M., Koch, F., Ploog, K., Roentegen, P. and Beneking, H., Sol. Stat. Commun. 59, 591 (1986).CrossRefGoogle Scholar
Lazzouni, M. E. and Sham, L. J., Phys. Rev B 48, 8948 (1986).CrossRefGoogle Scholar
Van de Walle, R., Van Meirhaeghe, R. L., Laflere, W. H. and Cordon, F., J. Appl. Phys. 74, 1885 (1993).CrossRefGoogle Scholar
Schubert, E. F. and Ploog, K.. Jpn. J. Appl. Phys. 24(8), L608 (1985).CrossRefGoogle Scholar
Gaggero-Sager, L. M. and Pérez-Alvarez, R., J. Appl. Phys. 78, 4566 (1995).CrossRefGoogle Scholar
Gaggero-Sager, L. M. and Mora-Ramos, M. E., Mat. Sci. Eng. B 47, 279 (1997).CrossRefGoogle Scholar
Ioriati, L., Phys. Rev. B 41, 8340 (1990).CrossRefGoogle Scholar
Martínez-Orozco, J.C., Mora-Ramos, M.E. and Duque, C.A., Phys. Status Solidi B, 249, 146 (2012)CrossRefGoogle Scholar
Çankaya, G., Uçar, N., Ayyildiz, E., Efeoğlu, H., Türüt, A., Tüzemen, S., and Yoğurtçu, Y. K.. Phys. Rev. B. 60, 15944 (1999).CrossRefGoogle Scholar
Xia, J.-B. and Fan, W.-J., Phys. Rev. B. 40, 8508 (1989).CrossRefGoogle Scholar
Yildirim, H. and Tomak, M., Eur. Phys. J. B 50, 559564 (2006).CrossRefGoogle Scholar