Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T04:51:21.254Z Has data issue: false hasContentIssue false

Non-Equilibrium Acceptor Concentration in GaN:Mg Grown by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

Y. Gong
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, U.S.A.
Y. Gu
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, U.S.A.
Igor L. Kuskovsky
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, U.S.A.
G. F. Neumark
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, U.S.A.
J. Li
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506, U.S.A.
J. Y. Lin
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506, U.S.A.
H. X. Jiang
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506, U.S.A.
I. Ferguson
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0250, U.S.A.
Get access

Abstract

It is shown that the high p-type conductivity in GaN:Mg, grown by metal-organic chemical vapor deposition followed by post-growth annealing, is due to non-equilibrium acceptor concentrations. A series of samples cut from a single GaN:Mg wafer, which initially had undergone rapid thermal annealing (RTA) after growth, has been investigated. The samples were annealed at various temperatures in nitrogen ambient for over 12 hours, and temperature-dependent Hall effect measurements were performed. For samples annealed at temperatures higher than 850 °C, the hole concentrations decrease by at least an order of magnitude, compared with the original sample. This behavior is explained by an Mg acceptor concentration in excess of its equilibrium solubility limit in the original sample; thus, at high enough temperatures, in the absence of hydrogen, Mg acceptors diffuse either to form electrically inactive precipitates or are eliminated. It is worth noting that the acceptor activation energy remains the same for all samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
2. Pearton, S.J., Ren, F., Zhang, A.P., Lee, K.P., Materials Science and Engineering, R30, 55 (2000).Google Scholar
3. Nagahama, S., Yanamoto, T., Sano, M., and Mukai, T., Appl. Phys. Lett. 79, 1948 (2001).Google Scholar
4. Jain, S.C., Willander, M., Narayan, J., Van Overstraeten, R., J. Appl. Phys. 87, 965 (2000).Google Scholar
5. Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
6. Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
7. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
8. Neugebauer, J. and Van, C.G. de Walle, Phys. Rev. Lett. 75, 4452 (1995);Google Scholar
Neugebauer, J. and Van de Walle, C.G., Appl. Phys. Lett. 68, 1829 (1996).Google Scholar
9. Gotz, W., Johnson, N.M., and Bour, D.P., Appl. Phys. Lett. 69, 3725 (1996).Google Scholar
10. Neumark, G.F., Phys. Rev. Lett. 62, 1800 (1989).Google Scholar
11. Kuskovsky, I. and Neumark, G.F., Inst. Phys. Conf. Series, 155, 227 (1996).Google Scholar
12. Qiao, D., Yu, L.S., Lau, S.S., Lin, J.Y., Jiang, H.X., and Haynes, T.E., J. Appl. Phys. 88, 4196 (2000).Google Scholar
13. Jang, H.W., Kim, S.Y., and Lee, J.-L., J. Appl. Phys. 94, 1748 (2003).Google Scholar
14. Van der Pauw, L.J., Philips Technical Rev. 59, 220 (1958).Google Scholar
15. Fan, Y., Han, J., He, L., Saraie, J., and Gunshor, R.L., Appl. Phys. Lett. 63, 1812 (1993).Google Scholar
16. Gotz, W., Kern, R.S., Chen, C.H., Liu, H., Steigerwald, D.A., Fletcher, R.M., Materials Science and Engineering, B59, 211 (1999).Google Scholar
17. Kim, S.-W., Lee, J.-M., Huh, C., Park, N.-M., Kim, H.-S., Lee, I.-H., and Park, S.-J., Appl. Phys. Lett. 76, 3079 (2000).Google Scholar
18. Mensz, P.M., Herko, S., Haberern, K.W., Gaines, J., and Ponzoni, C., Appl. Phys. Lett. 63, 2800 (1993).Google Scholar
19. p is calculated as r H /eR H , where R H is the Hall coefficient and r H is the scattering factor; we assume that r H equals to one and it is temperature independent.Google Scholar
20. Kuskovsky, I. and Neumark, G.F., Mat. Res. Soc. Symp. Proc. 406, 443 (1996).Google Scholar
21. Tanaka, T., Watanabe, A., Amano, H., Kobayashi, Y., and Akasaki, I., Appl. Phys. Lett. 65, 593 (1994).Google Scholar
22. Neumark, G.F., Phys. Rev. B 5, 408 (1972).Google Scholar
23. Neumark, G. F. and Schröder, D. K., J. Appl. Phys. 52, 855 (1981)Google Scholar
24. Gotz, W., Johnson, N.M., Bour, D.P., Chen, C., Liu, H., Imler, W., Electrochem. Soc. Proc. 96 (11), 87 (1996).Google Scholar
25. Kaufmann, U., Kunzer, M., Maier, M., Obloh, H., Ramakrishnan, A., Santic, B., and Schlotter, P., Appl. Phys. Lett. 72, 1326 (1998).Google Scholar
26. Youn, D.-H., Lachab, M., Hao, M., Sugahara, T., Takenaka, H., Naoi, Y., and Sakai, S., Jpn. J. Appl. Phys. 38, 631 (1999).Google Scholar
27. Nakano, Y. and Jimbo, T., J. Appl. Phys. 92, 5590 (2002).Google Scholar
28. McCluskey, M.D., Romano, L. T., Krusor, B. S., Johnson, N. M., Suski, T. and Jun, J., Appl. Phys. Lett. 73, 1281 (1998).Google Scholar