Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T22:06:33.667Z Has data issue: false hasContentIssue false

Nitrogen pair − hydrogen complexes in ZnO and p-type doping.

Published online by Cambridge University Press:  13 February 2012

Adisak Boonchun
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7079, USA
Walter R. L. Lambrecht
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7079, USA
Jiraroj T-Thienprasert
Affiliation:
Department of Physics, Kasetsart University, Bangkok 10900, Thailand Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok 10400, Thailand
Sukit Limpijumnong
Affiliation:
Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok 10400, Thailand School of Physics, Suranaree University of Technology and Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
Get access

Abstract

Electronic structure calculations using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional are presented for NO-pair complexes with and without hydrogen to test the hypothesis that such defect complexes could lead to shallower levels than for isolated NO and hence p-type doping. The H is found to bind strongly to one of the N in the pair and removes thecorresponding defect level from the gap but the second N’s polaronic defect level in the gap remains deep.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lyons, J. L., Janotti, A., and Van de Walle, C. G., Appl. Phys. Lett. 95, 252105 (2009).Google Scholar
2. Lany, S. and Zunger, A., Phys. Rev. B 81, 205209 (2010).Google Scholar
3. Meyer, B. K., Sann, J., Hofmann, D. M., Neumann, C. and Zeuner, A., Semicond. Sci. Technol. 20, S62 (2005).Google Scholar
4. Lautenschlaeger, S., Hofmann, M., Eisermann, S., Haas, G., Pinnisch, M., Laufer, A., and Meyer, B. K., Phys. Stat. Solidi B 248, 1217 (2011).Google Scholar
5. Heyd, J., Scuseria, G. E., and Ernzerhof, M., J. Chem. Phys. 124, 219906 (2006).Google Scholar
6. Kresse, G. and Furthmüller, J., Comput. Mat. Sci. 6, 1550 (1996).Google Scholar
7. Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
8. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976)Google Scholar
9. Limpijumnong, S., Li, X., Wei, S.-H., and Zhang, S. B., Physica B 376-377, 686 (2006).Google Scholar
10. Fang, Z.-Q., Claflin, B., Look, D. C., Kerr, L. L., and Li, X., J. Appl. Phys. 102, 023714 (2007).Google Scholar
11. Limpijumnong, S., Li, X., Wei, S.-H., and Zhang, S. B., Appl. Phys. Lett. 86, 211910 (2005).Google Scholar