Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T11:46:47.001Z Has data issue: false hasContentIssue false

Nitride-Rich Hexagonal GaNP Growth Using Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  17 March 2011

Seikoh Yoshida
Affiliation:
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd. 2-4-3 Okano, Nishi-ku, Yokohama, 220-0073, Japan
Yoshiteru Itoh
Affiliation:
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd. 2-4-3 Okano, Nishi-ku, Yokohama, 220-0073, Japan
Junjiroh Kikawa
Affiliation:
Yokohama R&D Laboratories, The Furukawa Electric Co., Ltd. 2-4-3 Okano, Nishi-ku, Yokohama, 220-0073, Japan
Get access

Abstract

The growth of GaNP using laser-assisted metalorganic chemical vapor deposition (LA-MOCVD) was carried out for the fabrication of a light-emitting diode (LED). We used an Ar-F laser in order to decompose the source gases at lower temperatures. Trimethylgallium (TMG), ammonia (NH3) and tertialybuthylphosphine (TBP) were used for the growth. GaNP growth was carried out at different temperatures. After that, annealing was carried out at 1273-1373 K to improve the crystal quality.

As a result, N-rich GaNP could be grown at 1123-1223 K. The surface morphologies of GaNP were improved when the growth temperature was increased to above 1173 K. We investigated the photoluminescence (PL) of GaNP. The band-edge emission of GaNP was observed at 77 K upon applying thermal annealing at 1323 K. This peak shifted to about 0.2 eV compared with the GaN band-edge emission. Furthermore, a GaNP LED was fabricated and the electoluminescence spectra were investigated. The band-edge emission at 420 nm was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bellaiche, L., Wei, S.-H. and Zunger, A.: Appl. Phys. Lett. 70, 3558 (1997).Google Scholar
2 Wei, S.-H. and Zunger, A.: Phys. Rev. 76, 664 (1996).Google Scholar
3 Stringfellow, G. B.: J. Electrochem. Soc. 119, 1780 (1972).Google Scholar
4 Stringfellow, G. B.: J. Cryst. Growth. 27, 21 (1974).Google Scholar
5 Iwata, K., Asahi, H., Asami, K., Kuroiwa, R. and Gonda, S.: Jpn. Appl. 37, 1436 (1998).Google Scholar
6 Iwata, K., Asahi, H., Asami, K. and Gonda, S.: Jpn. Appl. Phys. 35, L1634 (1996).Google Scholar
7 Tampo, H., Asahi, H., Iwata, K., Hiroki, M., Asami, K. and Gonda, S.: Technical Report of Jpn. IEICE. 98, ED98 (1998).Google Scholar
8 Kimura, T., Yoshida, S., Wu, J., Yaguchi, H., Onabe, K. and Shiraki, Y.: Extended Abstracts of the 1999 Int'l. conf. SSDM, 54 (1999).Google Scholar
9 Tsutchiya, H., Sunaba, K., Yonemura, S., Suemasu, T. and Hasegawa, F.: Jpn. J. Appl. Phys. 36, L1 (1997).Google Scholar
10 Cheng, T. S., Jenkins, L. C., Hooper, S. E., Foxon, C. T., Orton, J. W. and Lacklison, D. E.: Appl. Phys. Lett. 66, 1509 (1995).Google Scholar
11 Kimura, T., Yoshida, S., Wu, J., Yaguchi, H., Onabe, K. and Shiraki, Y.: in Extended Abstracts of the 18th Electron. Mat. Symp., 7–2 (1999).Google Scholar
12 Yoshida, S., Kimura, T., Wu, J., Kikawa, J., Onabe, K. and Shiraki, Y.: MRS Intrnet J. Nitride Semicond. Res. 531, W3.41 (2000).Google Scholar
13 Pankove, J. I. and Hutchby, J. A.: J. Appl. Phys. 47, 5387 (1976).Google Scholar
14 Jadwisienczak, W.M. and Lozykowski, H. J.: Mat. Res. Soc. Symp. Proc. 482, 1033(1998).Google Scholar
15 Kikawa, J., Yoshida, S. and Itoh, Y., Proc. Int'l Workshop on Nitride Semicon., IPAP conf. 1, 429 (2000).Google Scholar
16 Kikawa, J., Yoshida, S. and Itoh, Y. to be published in J. Crystal Growth.Google Scholar
17 Yoshida, S. and Suzuki, J., MRS Internat J. Nitride Semicond. Res. 531, W4.8 (2000).Google Scholar