Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T01:11:52.040Z Has data issue: false hasContentIssue false

Nitridation of Substrates With Hydrazine Cyanurate for The Growth of Gallium Nitride

Published online by Cambridge University Press:  10 February 2011

T. J. Kropewnicki
Affiliation:
School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, tk23@prism.gatech.edu
P. A. Kohl
Affiliation:
School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100
Get access

Abstract

The use of purified hydrazine cyanurate as a solid source of hydrazine in the low temperature nitridation of GaAs (100) and (111) and sapphire (0001) is demonstrated. Thenitridated surfaces were analyzed by X-ray Photoelectron Spectroscopy (XPS) for chemical composition and Atomic Force Microscopy for surface morphology. The GaAs surfaces were composed primarily of GaN, GaAs, and Ga2O3, and were as smooth as unprocessed standards. The nitridated sapphire surfaces were composed of A1NxO1-x and exhibited three-dimensional growth for long nitridation times.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morkog, H., Botchkarev, A., Salvador, A., and Sverdlov, B., J. Cryst. Growth 150, 887 (1995).Google Scholar
2. Brandt, O., Yang, H., Millhdiuser, J.R., Trampert, A., Ploog, K. H., Materials Science and Engineering B43 p. 215 (1997).Google Scholar
3. Sitar, Z., Paisley, M. J., Yan, B., Ruan, J., Choyke, W. J., and Davis, R. F. in Diamond, , Silicon Carbide, and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Proc. 162, Pittsburgh, PA, 1990) p. 537.Google Scholar
4. Duffy, M. T., Wang, C. C., O'Clock, G. D. Jr., IIIMcFarlane, S. H., and Zanzucchi, P. J., J. Electron. Mater. 2, 359 (1973).Google Scholar
5. Doolittle, W.A., Kang, S., Kropewnicki, T., Stock, S., Kohl, P., and Brown, A., submitted to J. Electron. Mat.Google Scholar
6. Nam, O .-H. , Bremsen, M. D., Zheleva, T. S., and Davis, R. F., App. Phys. Lett. 71 (8), 2638 (1997)Google Scholar
7. Kropewnicki, T. and Kohl, P., J. Vac. Sci. Technol. A 16 (1), 139 (1998).Google Scholar
8. Briot, O., Alexis, J. P., Tchounkeu, M., Aulombard, R. L., Materials Science and Engineering B43, 147 (1997).Google Scholar
9. Hedman, J., and Martensson, N., Phys. Scr. 22, 176 (1980).Google Scholar
10. Leonhardt, G., Berndtsson, A., Hedman, J., Klasson, M., Nilsson, R., Phys. Status Solidi (b) 60, 241 (1973).Google Scholar
11. Mizokawa, Y., Iwasaki, H., Nishitani, R., Nakamura, S., J. Electron Spectrosc. Relat. Phenom. 14, 129 (1978).Google Scholar
12. Ley, L., Pollak, R. A., McFeely, F. R., Kowalczyk, S. P., Shirley, D. A., Phys. Rev. B 9, 600 (1974).Google Scholar
13. Hauenstein, R. J., Collins, D. A., O'Steen, M. L., Bandic, Z. Z., and McGill, T. C. in Film Synthesis and Growth Using Energetic Beams, edited by Atwater, H. A. (Mater. Res. Soc. Proc. 388, Pittsburgh, PA, 1995) p. 259.Google Scholar
14. McGuire, G. E., Schweitzer, G.K.K., Carlson, T. A., Inorg. Chem. 12, 2451 (1973).Google Scholar
15. Taylor, J. A., J. Vac. Sci. Technol. 20, 751 (1982).Google Scholar
16. Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., in Handbook of X-ray Photoelectron Spectroscopv, edited by Chastain, J. (Perkin-Elmer Corporation, Eden Prairie, MN, 1992), p. 213.Google Scholar
17. Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T., and Minagawa, S., J. Appl. Phys. 79, 3487 (1996).Google Scholar
18. Heinlein, C., Grepstad, J., Berge, T., Reichert, H., App. Phys. Lett. 71 (3), 341 (1997).Google Scholar