Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-13T07:14:52.570Z Has data issue: false hasContentIssue false

Ni-Ge Intermixing on GaAs Produced by Temperature Standardized Rapid Thermal Annealing

Published online by Cambridge University Press:  25 February 2011

Michael B. Brooks
Affiliation:
Stanford Electronics Labs, Stanford University, Stanford, CA 94305-4055
Thomas W. Sigmon
Affiliation:
Stanford Electronics Labs, Stanford University, Stanford, CA 94305-4055
Get access

Abstract

A new Rapid Thermal Annealing technique has been developed which uses very small samples of low melting elements and eutectic alloys to standardize temperature measurements. Temperatures of thin films during anneal are shown to lie within −3°C to +13°C of nominal for measured short anneal times using a special sample geometry. Results of annealing Ge/Ni/GaAs and Au/Ge/Ni/GaAs at 200°C and 250°C are presented. Rutherford backscattering is used to analyze the films and the resulting channeling spectra show that Ge consumption follows parabolic kinetics, with an activation energy estimate of ≈ 0.7eV. The data is consistent with a controlling process of fast Ni diffusion through grain boundaries at these low temperatures. We expect that a Ni2Ge phase is being formed preferentially, along with a NixGaAs phase at the GaAs/Ni interface. In this contact metal system Au interacts only minimally for the times and temperatures studied. Our results agree with those of previous workers who studied Ni diffusion during NixGaAs phase formation at comparable temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gill, S.S., and Dawsey, J.R., Thin Solid Films, 167, 161 (1988).CrossRefGoogle Scholar
2. Allen, L.H., Hung, L.S., Kavanagh, K.L., Phillips, J.R., Yu, A.J., and Mayer, J.W., Appl. Phys. Lett. 51, 326 (1987).CrossRefGoogle Scholar
3. Bahir, G., Merz, J.L., Abelson, J.R. and Sigmon, T.W., J. Electron. Mat., 16, 257 (1987).CrossRefGoogle Scholar
4. Finstad, T.G., Thin Solid Films 47, 279 (1977).CrossRefGoogle Scholar
5. Wittmer, M., Nicolet, M-A., and Mayer, J.W., Thin Solid Films 42, 51 (1977).CrossRefGoogle Scholar
6. Marshall, E.D., Wu, S.S., Pai, C.S., Scott, D.M., and Lau, S.S., Mater. Res. Soc. Symp. Proc. 47, 161 (1985).CrossRefGoogle Scholar
7. Wittmer, M., Pretorius, R., Mayer, J.W. and Nicolet, M-A., Solid-State Electron. 20, 433 (1977).CrossRefGoogle Scholar
8. Ogawa, M., Thin Solid Films 70, 181 (1980).CrossRefGoogle Scholar
9. Sands, T., Keramidas, V.G., Washburn, J. and Gronsky, R., Appl. Phys. Lett. 48, 4042.(1986).CrossRefGoogle Scholar
10. Chen, S.H., Carter, C.B., Palmstrøm, C.J., J. Mater. Res. 3, 1385 (1988).CrossRefGoogle Scholar
11. Zheng, L.R., Hura, L.S., Mayer, J.W., Majni, G. and Ottaviani, G., Appl. Phys. Lett. 41, 646 (1972).CrossRefGoogle Scholar
12. Poate, J.M., Tisone, T.C., Appl. Phys. Lett. 24, 391 (1974).CrossRefGoogle Scholar
13. Tu, K.N., Chu, W.K., and Mayer, J.W., Thin Solid Films 25, 403 (1975),CrossRefGoogle Scholar
14. Chen, S.H., Carter, C.B., Palmstrøm, C.J., Ohashi, T., Appl. Phys. Lett. 48, 803 (1986).CrossRefGoogle Scholar
15. Egelhoff, W.F. jr., Stiegerwald, D.A., Rowe, J.E. and Bussing, T.D., J. Vac. Sci. Technol. A 6, 1495 (1988).CrossRefGoogle Scholar
16. Chu, W.K., Mayer, J.W., Nicolet, M-A., Backscattering Spectrometry. (Academic Press, Orlando, 1978), p. 145.Google Scholar
17. Ingrey, S. and MacLaurin, B., J. Vac. Sci. Technol. A 2, 258 (1984).CrossRefGoogle Scholar
18. Relling, E. and Botha, A.P., App. Surface. Sci. 35, 380 (19881989).CrossRefGoogle Scholar
19. Thompson, M.O., Cochran, R.C., and Doolittle, L., computer code RUMP (Cornell, 1985).Google Scholar