Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T10:36:01.670Z Has data issue: false hasContentIssue false

New ultrahigh vacuum setup and advanced diagnostic techniques for studying a-Si:H film growth by radical beams

Published online by Cambridge University Press:  21 March 2011

J.P.M. Hoefnagels
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E. Langereis
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
M.C.M. van de Sanden
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
W.M.M. Kessels
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Get access

Abstract

A new ultrahigh vacuum setup is presented which is designed for studying the surface science aspects of a-Si:H film growth using various advanced optical diagnostic techniques. The setup is equipped with plasma and radical sources which produce well-defined radicals beams such that the a-Si:H deposition process can be mimicked. In this paper the initial experiments with respect to deposition of a-Si:H using a hot wire source and etching of a-Si:H by atomic hydrogen are presented. These processes are monitored by real time spectroscopic ellipsometry and the etch yield of Si by atomic hydrogen is quantified to be 0.005±0.002 Si atoms per incoming H atom.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abelson, J.R., Appl. Phys. A 56, 493 (1993).Google Scholar
2. Kessels, W.M.M., Smets, A.H.M., Marra, D.C., Aydil, E.S., Sanden, M.C.M. van de, Thin Solid Films 383, 154 (2001).Google Scholar
3. Kessels, W.M.M., Hoefnagels, J.P.M., Oever, P.J. van den, Barrell, Y., Sanden, M.C.M. van de, Surf. Sci. Lett. 547, 865 (2003).Google Scholar
4. Coburn, J.W. and Winters, H.F., J. Appl. Phys. 50, 3189 (1979).Google Scholar
5. Keudell, A. Von, Schwarz-Selinger, T., Jacob, W., Appl. Phys. Lett. 79, 676 (2000).Google Scholar
6. Tschersich, K.G., J. Appl. Phys. 87, 2565 (2000).Google Scholar
7. Anton, R., Wiegner, Th., Naumann, W., Liebman, M., Klein, Chr., Bradley, Chr., Rev. Sci. Instrum. 71, 1177 (2000).Google Scholar
8. Collins, R.W., Ferlauto, A.S., Ferreira, G.M., Chen, C., Koh, J., Koval, R.J., Lee, Y., Pearce, J.M., Wronski, C.R., Sol. Energy Mater. Sol. Cells 78, 143 (2003).Google Scholar
9. Marra, D.C., Kessels, W.M.M., Sanden, M.C.M. van de, Kashefizadeh, K., Aydil, E.S., Surf. Sci. 530, 1 (2003).Google Scholar
10. Aarts, I.M.P., Hoex, B., Smets, A.H.M., Engeln, R., Kessels, W.M.M., Sanden, M.C.M. van de, to be published in Appl. Phys. Lett. 84 (2004).Google Scholar
11. Pipino, A.C.R., Hoefnagels, J.P.M., Watanabe, N., J. Chem. Phys. 120, 2879 (2004).Google Scholar
12. Aarts, I.M.P., Hoex, B., Gielis, J.J.H., Leewis, C.M., Smets, A.H.M., Engeln, R., Nesládek, M., Kessels, W.M.M., Sanden, M.C.M. van de, Mat. Res. Soc. Symp. Proc. 762, A19.8.1 (2003).Google Scholar
13. Jellison, G.E. Jr, and Modine, F.A., Appl. Phys. Lett. 69, 371 (1996).Google Scholar
14. Collins, R.W., Koh, J., Ferlauto, A.S., Rovira, P.I., Lee, Y., Koval, R.J., Wronski, C.R., Thin Solid Films 364, 129 (2000).Google Scholar
15. Smets, A.H.M., Kessels, W.M.M., Sanden, M.C.M. van de, Appl. Phys. Lett. 82, 865 (2003).Google Scholar
16. Kamei, T. and Matsuda, A., J. Vac. Sci. Technol. A 17, 113 (1999).Google Scholar
17. Morral, A. Fontcuberta i and Cabarrocas, P. Roca i, J. Non-Cryst. Solids 299, 196 (2002).Google Scholar