Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-16T01:00:10.189Z Has data issue: false hasContentIssue false

New Type of Superlattice: An Epitaxial Semiconductor-Atomic Superlattice, SAS

Published online by Cambridge University Press:  10 February 2011

Raphael Tsu*
Affiliation:
University of North Carolina at Charlotte, Charlotte, NC 28223
Get access

Abstract

Conventional superlattices are formed with repeating a basic period consisting of a heterojunction between two materials. A new type of superlattice are formed by replacing the heterojunction between adjacent semiconductors with semiconductor layers separated by adsorbed species such as oxygen atoms; and CO, molecules, etc. This new type of superlattice, SAS, semiconductor-atomic-superlattice, fabricated epitaxially, enriches the present class of heterojunction superlattices and quantum wells for quantum devices. The Si growth beyond the adsorbed monolayer of oxygen is epitaxial with fairly low defect density. At present, such a structure shows stable electroluminescence and insulating behavior, useful for optoelectronic and SOI (silicon-on-insulator) applications. SAS may form the basis of future all silicon ‘superchip’ with both electrons and photons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L. T., Appl. Phys. Lett. 57 10461048 (1990).Google Scholar
2.Lehmann, V., and Gösele, U., Appl. Phys. Lett. 58 856858 (1991).Google Scholar
3.Babic, D., and Tsu, R., Superlattices and Microstructures 22,582588(1997)Google Scholar
4.Tsu, R., Shen, H., and Dutta, M., Appl. Phys. Lett. 60 112114 (1992).Google Scholar
5.Prokes, S. M., A., J., , Freitas, and Searson, P. C., Appl. Phys. Lett. 60 32953297 (1992).Google Scholar
6. See for example: Kanemitsu, Y., Phys. Rev. B 49 1684516848 (1994).Google Scholar
7.Esaki, L., and Tsu, R., R., IBMJ. of Res. and Dev. 14 6165 (1970).Google Scholar
8.Matthews, J. W., and Blakeslee, A. E., E., A., J. Cryst. Growth 32 265273 (1976).Google Scholar
9.Osburn, G. C., J Appl. Phys. Lett. 57 15861589 (1982).Google Scholar
10.Tsu, R., Nature 364 19 (1993).Google Scholar
11.Tsu, R., Morais, J., and Bowhill, A., in Porous Silicon, Eds. Feng, Z. C. and Tsu, R. (World Scientific 1994), P. 443448.Google Scholar
12.Tsu, R., Hernandez, J. G., Chao, S. S., and Martin, D., Appl. Phys. Lett. 48, 647649 (1986).Google Scholar
13.Tsu, R., Morais, J., and Bowhill, A., Mat. Res. Soc. Symp.Proc. 358, 825832 (1995).Google Scholar
14.Stathis, J. H., and Kastner, M. A., Phys. Rev. B 35 2972 (1987).Google Scholar
15. See for example: Fauchet, P. M., in Porous Silicon, Eds. Feng, Z. C. and Tsu, R. (World Scientific 1994), P. 449465.Google Scholar
16.Anedda, A., et al. , J. Appl. Phys. 74 6993 (1993).Google Scholar
17.Street, R. A., and Biegelsen, D. K., Solid Satate Comm 33 11591162 (1980).Google Scholar
18.Tsu, R., Filios, A., Lofgren, C., Dovidenko, K. and Wang, C. G., Electrochem and Solid State Lett., 1 (2) 80 (1998).Google Scholar
19.Meakin, D., Stobbs, M., Stoemenos, J. and Economou, N.A., Appl. Phys. Lett. 52, 1053 (1988)Google Scholar
20.Tsu, R., Dovidenko, K., and Lofgren, C., ECS Proc. 99–22, 294301 (1999)Google Scholar
21.Tsu, R., ECS Proc. 98–19, 3 (1999)Google Scholar
22.Ding, J. and Tsu, R., Appl. Phys. Lett. 71, 2124 (1997).Google Scholar
23.Tsu, R., Zhang, Q., and Filios, A., SPIE 3290, 246 (1997).Google Scholar
24.Lu, Z.H., Lockwood, D.J. and Barlbeau, J.M., Nature,378, 825(1995)Google Scholar
25.Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Fauchet, P.M., Zacharias, M., Kohlert, P., McCaffrey, J.P. and Lockwood, D.J., ECS Proc. 97–11, 134 (1997)Google Scholar
26. In ‘Atomic Spectra and Atomic Structure’, Herzberg, G., (Dover Publications, New York, 1944)Google Scholar
27.Radziemski, L.J., and Andrew, K.L., J. Opt Soc. Am, 55,474(1965)Google Scholar
28.Kaufman, V., Radziemski, L.J., and Andrew, K.L., J. Opt Soc. Am, 56,911(1966).Google Scholar
29.Gupta, R. P., Phys. Rev.B32, 8278 (1985)Google Scholar
30.Li, Y.P, and Ching, W.Y., Phys. Rev. B31, 2172 (1985).Google Scholar
31.Mazzone, A.M., Europhysics Lett. 35, 1318 (1996)Google Scholar
32.Tsu, R., Filios, A., Lofgren, C., Cahill, D., Nostrand, J. Van, and Wang, C.G., Solid-State Electronics, 40, 221223 (1996)Google Scholar
33.Distler, G.I., Zvyagin, B.B., Nature, 212, 807 (1966).Google Scholar
34.Tsu, R., Filios, A., and Zhang, Q., ‘Perspectives of Light Emitters in Nanoscale Silicon’ Advances in Science and Technology, 27, Innovative Light Emitting Materials, editors, Vincenzini, P. and Righini, G.C., (Techna Sri. 1999) p.55Google Scholar
35. MS Thesis by Dinkier, J., Deaprtment of ECE, UNC-Charlotte, Dec. 1998.Google Scholar
36.Tsu, R., Filios, A., Lofgren, C., Ding, J., Zhang, Q., Morais, J., and Wang, C.G., ECS Proc. 97–11, 341350 (1997)Google Scholar