Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T15:05:50.687Z Has data issue: false hasContentIssue false

A New Templating Route to Ordered Mesoporous Materials

Published online by Cambridge University Press:  28 February 2011

Peter T. Tanev
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
Thomas J. Pinnavaia
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
Get access

Abstract

A new templating route to ordered mesoporous materials is demonstrated based on hydrogen bonding interactions and self-assembly between neutral primary amine surfactants (S°) and neutral inorganic precursors (1°). The S° I° templating pathway affords ordered mesoporous materials with thicker framework walls, smaller X-ray scattering domain sizes, and substantial textural mesoporosities in comparison to MCM-41 materials templated with quaternary ammonium cations. This synthetic strategy also allows for the facile, environmentally benign recovery of the cost-intensive template by simple solvent extraction methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Notes

1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature 359, 710 (1992);Google Scholar
Beck, J. S., Vartuli, M. C., Roth, W. J., Leonowitz, M. E., Kresge, C. T., Schmitt, K. O., Chu, C. T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
2. Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T., Sieger, P., Leon, R., Petroff, P. M., Schuth, F. and Stucky, G. D., Nature 368, 317 (1994).Google Scholar
3. Tanev, P. T., Chibwe, M. and Pinnavaia, T. J., Nature 368, 321 (1994).Google Scholar
4. Whitehurst, D. D., U. S. Patent No. 5 143 879 (1 September 1992)Google Scholar
5. Beck, J. C., Chu, C. T-W., Johnson, I. D., Kresge, C. T., Leonowitz, M. E., Roth, W. J. and Vartuli, J. C., WO 91/113090 (8 August 1991);Google Scholar
Schmidt, R., Akporiaye, D., Stbcker, M. and Ellestad, O. H., in Zeolites and Related Microporous Materials, State of the Art 1994, Studies in Surface Science and Catalysis, edited by Weitkamp, J., Karge, H. G., Pfeifer, H. and Hölderich, W. (Elsevier Science B. V., Amsterdam, 1994), vol. 84, pp. 6168.Google Scholar
6. Tanev, P. T. and Pinnavaia, T. J., Science (in press).Google Scholar
7. Horvath, G. and Kawazoe, K. J., J. Chem. Eng. Jpn. 16, 470 (1983).Google Scholar
8. The thermogravimetric analysis (TGA) was performed on a Cahn system TG analyzer with a heating rate of 5 K/min. The analysis of the as-synthesized HMS-E reveals - 47 % total weight loss upon heating to 1073 K. Three distinguishing endothermic features centered at approximately 421, 511, and 733 K were observed. The first effect is attributed to the release of adsorbed water, the second to the desorption and decomposition of template, and the third to dehydroxylation of the surface. In contrast, the TGA of the ethanol extracted HMS-E gave 11 % total weight loss with ∼ 9 % corresponding to water desorption and surface dehydroxylation.Google Scholar
9. The unit cell parameter (ao) is calculated using the formula ao = 2d 100/'3.Google Scholar
10. McCullen, S. B. and Vartuli, J. C., U. S. Patent No. 5 156 829 (20 October 1992);Google Scholar
Coustel, N., Di, F. Renzo and Fajula, F., J. Chem. Soc. Chem. Commun. 1994, 967.Google Scholar
11. Gnep, N. S., Roger, P., Cartrand, P., Guisnet, M., Juquin, B. and Hamon, C., Acad, C. R.. Sci. Ser. 2, 309, 1743 (1989);Google Scholar
Chauvin, B., Fajula, F., Figueras, F., Gueguen, C. and Bousquet, J., J. Catal. 111, 94 (1988).Google Scholar