Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:07:17.220Z Has data issue: false hasContentIssue false

A New Synchrotron-based Technique for Measuring Stresses in Ultrathin Metallic Films

Published online by Cambridge University Press:  15 March 2011

Jochen Böhm
Affiliation:
Institut für Metallkunde, Universität Stuttgart, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Patric Gruber
Affiliation:
Institut für Metallkunde, Universität Stuttgart, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Ralph Spolenak
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Alexander Wanner
Affiliation:
Institut für Werkstoffkunde I, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
Eduard Arzt
Affiliation:
Institut für Metallkunde, Universität Stuttgart, Heisenbergstr. 3, D-70569 Stuttgart, Germany Max Planck Institute for Metals Research, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Get access

Abstract

A novel synchrotron-based X-ray diffraction technique is presented by which it is possible to characterize the evolution of stresses in polycrystalline metallic films thinner than 100 nm. The film under investigation is deposited on a flexible polyimide substrate which is subjected to a uniaxial tensile test. The evolutions of longitudinal and transverse elastic strains in the film are monitored simultaneously by means of a high-resolution area detector. The strain resolution is better than 10−4. The samples are typically subjected to 6 % total strain and subsequently unloaded. First experiments carried out on Au films in the thickness range between 20 nm and 1000 nm show the usefulness and the power of this new technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kretschmann, A., Kuschke, W.-M., Baker, S. P., and Arzt, E., Mater. Res. Soc. Symp. Proc. 436, 5964 (1997).Google Scholar
2. Hommel, M. and Kraft, O., Acta Mater. 49, 3935 (2001).Google Scholar
3. PO, P.O. Renault, Villain, P., Coupeau, C., Goudeau, P. P, , and Badawi, K.F., Thin Solid Films 242, 267 (2003)Google Scholar
4. Flinn, P.A. and Chiang, C., J. Appl. Phys. 67, 2927 (1990).Google Scholar
5. Besser, P.R., Brennan, B., and Bravman, J.C., J. Mater. Res. 9, 13 (1994).Google Scholar
6. Kuschke, W.M. and Arzt, E., Appl. Phys. Lett. 64, 1097 (1994).Google Scholar
7. Böhm, J., Gruber, P., Spolenak, R., Stierle, A., Wanner, A., and Arzt, E., Rev. Sci. Instrum. 75, 1110 (2004).Google Scholar
8. Wanner, A. and Dunand, D. C., Metall. Mater. Trans. A 31A, 2949 (2000).Google Scholar
9. Leung, O.S., Munkholm, A., Brennan, S., and Nix, W.D., J. Appl. Phys. 88, 1389 (2000).Google Scholar
10. Gao, H., Zhang, L., Nix, W.D., Thompson, C.V., and Arzt, E., Acta Materialia 47, 2865 (1999).Google Scholar
11. Weiss, D., Gao, H., and Arzt, E., Acta Materialia 49, 2395 (2001).Google Scholar
12. Emery, R.D., Povirk, G.L., Acta Materialia 51, 2079 (2003).Google Scholar