Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T10:55:26.907Z Has data issue: false hasContentIssue false

A New Post Annealing Method for AlGaN/GaN Heterostructure Field-Effect Transistors Employing XeCl Excimer Laser Pulses

Published online by Cambridge University Press:  01 February 2011

Min-Woo Ha
Affiliation:
School of Electrical Engineering #50, Seoul National University, Shinlim-dong, Gwanak-gu, Seoul 151-742, Korea Tel.:+82-2-880-7254, Fax:+82-2-875-7254, E-Mail: isobar@emlab.snu.ac.kr
Seung-Chul Lee
Affiliation:
School of Electrical Engineering #50, Seoul National University, Shinlim-dong, Gwanak-gu, Seoul 151-742, Korea Tel.:+82-2-880-7254, Fax:+82-2-875-7254, E-Mail: isobar@emlab.snu.ac.kr
Joong-Hyun Park
Affiliation:
School of Electrical Engineering #50, Seoul National University, Shinlim-dong, Gwanak-gu, Seoul 151-742, Korea Tel.:+82-2-880-7254, Fax:+82-2-875-7254, E-Mail: isobar@emlab.snu.ac.kr
Kwang-Seok Seo
Affiliation:
School of Electrical Engineering #50, Seoul National University, Shinlim-dong, Gwanak-gu, Seoul 151-742, Korea Tel.:+82-2-880-7254, Fax:+82-2-875-7254, E-Mail: isobar@emlab.snu.ac.kr
Min-Koo Han
Affiliation:
School of Electrical Engineering #50, Seoul National University, Shinlim-dong, Gwanak-gu, Seoul 151-742, Korea Tel.:+82-2-880-7254, Fax:+82-2-875-7254, E-Mail: isobar@emlab.snu.ac.kr
Get access

Abstract

A new post annealing method employing excimer laser pulses is proposed to improve the transfer characteristics and the breakdown voltage of the unpassivated AlGaN/GaN heterostructure field-effect transistor (HFET) and the passivated one. The XeCl excimer laser pulses with wavelength of 308 nm anneal the AlGaN/GaN HFET after the Schottky gate metallization. The interface defects between the Schottky gate metal and a GaN layer is decreased by the lateral heat diffusion of the laser pulses. Our experimental results show that the drain current and the maximum transconductance of the unpassivated AlGaN/GaN HFET after laser pulses annealing are 496 mA/mm and 134 mS/mm while a virgin device shows 434 mA/mm and 113 mS/mm, respectively. The proposed method anneals effectively the SiO2 passivated AlGaN/GaN HFET and the leakage current of the passivated device is decreased from 483 nA to 29 nA.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mishra, Umesh K., Wu, Yi-Feng, Keller, Bernd P., Keller, Stacia, and Denbaars, Steven P., IEEE Trans. on Microwave Theory Tech. 46, 756 (1998).Google Scholar
2 Saito, Wataru, Takada, Yoshiharu, Kuraguchi, Masahiko, Tsuda, Kunio, Omura, Ichiro, Ogura, Tsuneo, and Ohashi, Hiromichi, IEEE Trans. Electron Devices 50, 2528 (2003).Google Scholar
3 Xing, Huili, Dora, Y., Chini, A., Heikman, S., Keller, S., and Mishra, U. K., IEEE Electron Device Lett. 25, 161 (2004).Google Scholar
4 Miura, N., Nanjo, T., Suita, M., Oishi, T., Abe, Y., Ozeki, T., Ishikawa, H., Egawa, T., and Jimbo, T., Solid State Electron. 48, 689 (2004).Google Scholar
5 Lee, Jaesun, Liu, Dongmin, Kim, Hyeongnam, and Lu, Wu, Solid State Electron. 48, 1855 (2004).Google Scholar
6 Lee, Jaesun, Liu, Dongmin, Kim, Hyeongnam, and Lu, Wu, Appl. Phys. Lett. 85, 2631 (2004).Google Scholar
7 Lin, Zhaojun, Kim, Hyeongnam, Lee, Jasesun, and Lu, Wu, Appl. Phys. Lett. 84, 1585 (2004).Google Scholar
8 Trew, Robert J., and Mishra, Umesh K., IEEE Electron Device Lett. 12, 524 (1991).Google Scholar
9 Hacke, P., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Appl. Phys. Lett. 63, 2676 (1993).Google Scholar
10 Muth, J. F., Lee, J. H., Shmagin, I. K., Kolbas, R. M., Casey, H. C., Keller, B. P., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 71, 2572 (1997).Google Scholar
11 Yu, L. S., Qiao, D., Lau, S. S., and Redwing, J. M., Appl. Phys. Lett. 75, 1419 (1999).Google Scholar
12 Chen, H., Chen, K., Drabold, D. A., and Kordesch, M. E., Appl. Phys. Lett. 77, 1117 (2000).Google Scholar
13 Green, Bruce M., Chu, Kenneth K., Chumbes, E. Martin, Smart, Joseph A., Shealy, James R., Eastman, Lester F., IEEE Electon Device Lett. 21, 268 (2000)Google Scholar
14 Vetury, Ramakrishna, Zhang, Naiqain Q., Keller, Stacia, and Mishra, Umesh K., IEEE Trans. on Electron Devices 48, 560 (2001)Google Scholar