Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-06T11:42:44.936Z Has data issue: false hasContentIssue false

A New Interpretation of Stress Relaxations in Ni3(Al,Hf) Single Crystals.

Published online by Cambridge University Press:  22 February 2011

J. Bonneville
Affiliation:
Ecole Polytechnique Fédérate de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne, (Switzerland).
P. Spätig
Affiliation:
Ecole Polytechnique Fédérate de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne, (Switzerland).
J.-L. Martin
Affiliation:
Ecole Polytechnique Fédérate de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne, (Switzerland).
Get access

Abstract

A technique of repeated stress relaxations is used to characterise the strain hardening rate (K) and the mobile dislocation density (ρm) in the flow strength anomaly domain of Ni3(Al,Hf) single crystals. It is shown that there is no independent means for measuring both effects but that reasonable assumptions about the strain hardening rate lead to determine the variation of ρm during relaxation. Preliminary results indicate that during relaxation ρm decreases more rapidly with strain (stress) when the temperature is raised.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sargent, G.A., Acta Metall. 13, 663 (1965).Google Scholar
[2] Kubin, L. P., Phil. Mag. 30, 705 (1974).Google Scholar
[3] Spätig, P., Bonneville, J. and Martin, J.-L, Mat. Scie. Eng. A 167, 73 (1993).Google Scholar
[4] Spätig, P., Bonneville, J. and Martin, J.-L. in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, Ian, Daniel Whittenberger, Ram Darolia J. and Yoo, Man H. (Mat. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993) pp. 429434.Google Scholar
[5] Spätig, P., Bonneville, J. and Martin, J.-L., J. de Physique IV 3 (C7), 445 (1993).Google Scholar
[6] Guiu, F. and Pratt, P.L., Phys. Stat. Sol. 6 (1964) 111.Google Scholar
[7] Friedel, J., Dislocations, Pergamon Press (1964) 223.Google Scholar
[8] Schöck, G. , Phys. Stat. Sol. 8, 499 (1965).Google Scholar
[9] Seeger, A., Diehl, J., Mader, S. and Rebstock, H., Phil. Mag. 2, 323 (1957).Google Scholar
[10] Spätig, P. and Bonneville, J., in preparation.Google Scholar
[11] Hart, E.W., Acta Met. 18, 599 (1970).Google Scholar
[12] Gupta, I. and Li, J.C.M., Met. Trans. 1, 2323 (1970).Google Scholar
[13] Rhode, R.W. and Nordstrom, T.V., Scripta Met. 7, 317 (1973).Google Scholar
[14] Okazaki, K., Aono, Y. and Kawaga, M., Acta Met. 24, 1121 (1976).Google Scholar
[15] Meyers, M.A., Guimarães, J.R.C. and Avillez, R.R., Met. Trans A 10 , 34 (1979).Google Scholar
[16] Spätig, P., Bonneville, J. and Martin, J.-L. in Strength of Materials, edited by Oikawa, H., Maruyama, K., Takeuchi, S. and Yamaguchi, M. (Proc. 10th ICSMA, Sendai, The Japan Institute of Metals 1994).pp. 353356.Google Scholar
[17] Baluc, N., PhD thesis n° 886, EPF Lausanne, Switzerland (1990).Google Scholar