Hostname: page-component-68945f75b7-9klrw Total loading time: 0 Render date: 2024-08-06T07:35:00.971Z Has data issue: false hasContentIssue false

A New Approach to Light Scattering from Nanotextured Interfaces For Silicon Thin-film Solar Cells

Published online by Cambridge University Press:  01 February 2011

Corsin Battaglia
Affiliation:
corsin.battaglia@epfl.ch, EPFL, IMT, Neuchâtel, Switzerland
Jordi Escarre
Affiliation:
jordi.escarre@epfl.ch, EPFL, IMT, Neuchâtel, Switzerland
Karin Söderström
Affiliation:
karin.soederstroem@epfl.ch, EPFL, IMT, Neuchâtel, Switzerland
Franz-Josef Haug
Affiliation:
franz-josef.haug@epfl.ch, EPFL, IMT, Neuchâtel, Switzerland
Didier Dominé
Affiliation:
didier.domine@supsi.ch, EPFL, IMT, Neuchâtel, Neuchâtel, Switzerland
Andrea Feltrin
Affiliation:
andrea.feltrin@epfl.ch, EPFL, IMT, Neuchâtel, Switzerland
Christophe Ballif
Affiliation:
christophe.ballif@epfl.ch, EPFL, IMT, Neuchâtel, Neuchâtel, Switzerland
Get access

Abstract

We investigate the influence of refractive index contrast on the light scattering properties of nanotextured interfaces, which serve as front contact for p-i-n thin-film silicon solar cells. We here focus on ZnO surfaces with randomly oriented pyramidal features, known for their excellent light trapping performance. Transparent replicas, with a different refractive index, but practically identical morphology compared to their ZnO masters, were fabricated via nanoimprinting. Within the theoretical framework we recently proposed, we show how the angular and spectral dependence of light scattered by nanostructures with identical morphology but different refractive index may be related to each other allowing direct comparison of their light trapping potential within the device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Faÿ, S., Steinhauser, J., Oliveira, N., Vallat-Sauvain, E., and Ballif, C., Thin Solid Films 515, 8558 (2007)Google Scholar
2 Berginski, M., Hüpkes, J., Reetz, W., Rech, B., and Wuttig, M., Thin Solid Films 516, 5836 (2008)Google Scholar
3 Battaglia, C., Söderström, K., Escarré, J., Haug, F.-J., Dominé, D., Cuony, P., Boccard, M., Bugnon, G., Denizot, C., Despeisse, M., Feltrin, A., and Ballif, C., Appl. Phys. Lett. 96, 213504 (2010)Google Scholar
4 Bailat, J., Dominé, D., Schlüchter, R., Steinhauser, J., Faÿ, S., Freitas, F., Bucher, C., Feitknecht, L., Niquille, X., Tscharner, T., Shah, A., and Ballif, C., Proc. 4th Conf. Photovoltaic Energy Conversion, 1533 (2006)Google Scholar
5 Benagli, S., Borello, D., Vallat-Sauvain, E., Meier, J., Kroll, U., Hoetzel, J., Bailat, J., Steinhauser, J., Marmelo, M., Monteduro, G., and Castens, L., Proc. 24th European Photovoltaic Solar Energy Conference, 3BO.9.3 (2009)Google Scholar
6 Dominé, D., Haug, F.-J., Battaglia, C., and Ballif, C., J. Appl. Phys. 107, 044504 (2010)Google Scholar
7 Escarré, J., Söderström, K., Cubero, O., Haug, F.-J., and Ballif, C., in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology – 2010 (Mater. Res. Soc. Symp. Proc. 1245, Warrendale, PA, 2010), A7.4 Google Scholar
8 Söderström, K., Escarré, J., Cubero, O., Haug, F.-J., Perregaux, S., and Ballif, C., accepted for publication in Prog. Photovolt: Res. Appl.Google Scholar
9 Harvey, J. E., Vernold, C. L., Krywonos, A., and Thomson, P. L., Appl. Opt. 38, 6469 (1999)Google Scholar
10 Dominé, D., Ph.D. thesis, Université de Neuchâtel (2009)Google Scholar