Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T03:54:20.662Z Has data issue: false hasContentIssue false

Neutron Scattering Study of Layered Silicates Pillared with Alkylandnonium Ions

Published online by Cambridge University Press:  21 February 2011

D. A. Neumann
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899
J. M. Nicol
Affiliation:
University of Maryland, College Park, MD 20742 & NIST, Gaithersburg, MD
J. J. Rush
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899
N. Wada
Affiliation:
Department of Physics, Colorado School of Mines, Golden, CO 80401
Y. B. Fan
Affiliation:
Michigan State University, East Lansing, MI 48824
H. Kim
Affiliation:
Michigan State University, East Lansing, MI 48824
S. A. Solin
Affiliation:
Michigan State University, East Lansing, MI 48824
T. J. Pinnavaia
Affiliation:
Michigan State University, East Lansing, MI 48824
S. F. Trevino
Affiliation:
ARDEC, Picatinny Arsenal, NJ & NIST, Gaithersburg, MD 20899
Get access

Abstract

Incoherent, inelastic neutron scattering has been used to study the vibrational spectra of tetramethylammonium montmorillonite and trimethylammonium vermiculite in the energy range 20–140 meV. For both systems peaks are observed due to the internal modes of the intercalate and to the excitations of the hydroxyl groups within the host layers. For the montmorillonite sample, it is found that the steric constraints imposed on the tetramethylammonium ion by the bounding clay layers contribute an additional 28 meV to the rotational barrier of the methyl groups. This additional barrier is shown to be strongly related to the volume that the tetramethylammonium ion occupies. For the trimethylammonium vermiculite sample normal mode analysis of the internal modes of the intercalated ion shows that the N-H bond is parallel to the c-axis of the host.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Solin, S. A., J. Mol. Catalysis 27, 293 (1984).CrossRefGoogle Scholar
2. Pinnavaia, T. J., in Chemical Reactions in Organic and Inorganic Constrained Systems, ed. by Setton, R. (D. Reidel, 1986), pg. 151.CrossRefGoogle Scholar
3. Pinnavaia, T. J., Science 220, 365 (1983).Google Scholar
4. Laszlo, P., Science 235, 1473 (1987).Google Scholar
5. Barrer, R. M., Clays & Clay Minerals 37, 385 (1989).Google Scholar
6. Fan, Y. B., Solin, S., Kim, H., Pinnavaia, T., Neumann, D., to be published.Google Scholar
7. Neumann, D. A., Nicol, J. M., Wada, N., Rush, J. J., and Trevino, S. F., to be published.Google Scholar
8. Squires, G. L., Introduction to the Theory of Thermal Neutron Scattering, (Cambridge University Press, Cambridge, 1978), chapter 3.Google Scholar
9. Dutta, P., Barco, B. del, Shieh, D., Chem. Phys. Lett. 127, 200 (1986).Google Scholar
10. Kabisch, G., J. Raman Spect. 9, 279 (1980).Google Scholar
11. Weiss, S. and Leroi, G. E., Spectrochimica Acta 25A, 1759 (1969).Google Scholar
12. Ratcliffe, C. I. and Waddington, T. C., J. Chem. Soc. Faraday Transactions 2, 72, 1935 (1976).Google Scholar
13. Brun, T. O., Curtiss, L. A., Iton, L. E., Kleb, R., Newsam, J. M., Beyerlein, R. A., and Vaughan, D. E., J. Am. Chem. Soc. 109, 4118 (1987).Google Scholar
14. Kim, H., Jin, W., Lee, S., Zhou, P., Pinnavaia, T. J., Mahanti, S. D., and Solin, S. A., Phys. Rev. Lett. 60, 2168 (1988).CrossRefGoogle Scholar