Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T01:09:18.041Z Has data issue: false hasContentIssue false

Neutron Scattering Study of Antiferromagnetic and Ferromagnetic Coupling in Ni/Ag Multilayers

Published online by Cambridge University Press:  03 September 2012

B. Rodmacq
Affiliation:
CEA/Département de Recherche Fondamentale sur la Matière Condensée, BP 85X, 38041 Grenoble Cedex, France
P. Burlet
Affiliation:
CEA/Département de Recherche Fondamentale sur la Matière Condensée, BP 85X, 38041 Grenoble Cedex, France
Ph. Mangin
Affiliation:
Laboratoire de Métallurgie Physique et de Sciences des Matériaux, Université de Nancy, BP 239, 54506 Vandoeuvre Cedex, France
M. Hennion
Affiliation:
CEA/Laboratoire Léon Brillouin, Centre d'Etudes de Saclay, 91191 Gif sur Yvette Cedex, France.
Get access

Abstract

Indirect Magnetic coupling in sputtered Ni/Ag Multilayers has been recently studied by magnetization and magnetoresistance techniques. These experiments indicate that coupling is anti ferromagnetic through 11 and 30 A of silver, and probably ferromagnetic through 20 Å. We present here direct evidence for such a magnetic coupling for all three thicknesses, as obtained from low angle neutron scattering experiments. Multilayers in which the Ag layer thickness is either 11 or 30 Å both exhibit a supplementary diffraction peak at a q value corresponding to twice the chemical period. Its evolution with both temperature and applied field confirms its purely magnetic origin. In order to study the coupling through 20 Å of silver, we prepared a multilayer in which the Ag layers are alternately 11 and 20 Å thick. In this case, we also observe a doubling of the chemical period. The coupling through 11 Å being anti ferromagnetic, this unambiguously shows that the coupling through 20 Å is ferromagnetic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B. and Sowers, H., Phys. Rev. Lett. 57, 2442 (1986)Google Scholar
2. Parkin, S.S.P., More, N. and Roche, K.P., Phys. Rev. Lett. 64, 2304 (1990)Google Scholar
3. Mosca, D.H., Petroff, F., Fert, A., Schroeder, P.A., Pratt, W.P. and Loloee, R., J. Magn. Magn. Mater. 94, L1 (1991);Google Scholar
Parkin, S.S.P., Li, Z.G. and Smith, D.J., Appl. Phys. Lett. 58, 2710 (1991)Google Scholar
4. dos Santos, C.A., Rodmacq, B., Vaezzadeh, M. and George, B., Appl. Phys. Lett. 59, 126 (1991)Google Scholar
5. Cebollada, A., Martinez, J.L., Gallego, J.M., de Miguel, J.J., Miranda, R., Ferrer, S., Batallan, F., Fillion, G. and Rebouillat, J.P., Phys. Rev. B 39, 9726 (1989)Google Scholar
6. Bartelemy, A., Fert, A., Baibich, M. N., Hadjoudj, S., Petroff, F., Etienne, P., Cabanel, R., Lequien, R., Nguyen van Dau, F. and Creuzet, G., J. Appl. Phys. 67, 5908 (1990)Google Scholar
7. Parkin, S.S.P., Mansour, A. and Felcher, G.P., Appl. Phys. Lett. 58, 1473 (1991)Google Scholar
8. Hosoito, N., Mibu, K., Araki, S., Shinjo, T., Itoh, S. and Endoh, Y., J. Phys. Soc. Jap. 61, 300 (1992)Google Scholar
9. Huang, Y.Y., Felcher, G.P. and Parkin, S.S.P., J. Magn. Magn. Mater. 99, L31 (1991)Google Scholar
10. Rodmacq, B., Mangin, P. and Vettier, C., Europhys. Lett. 15, 503 (1991)Google Scholar
11. Rodmacq, B., George, B., Vaezzadeh, M. and Mangin, Ph., Phys. Rev. B 46, 1206 (1992)Google Scholar
12. Rodmacq, B., Dumesnil, K., Vergnat, M., Mangin, Ph. and Hennion, M., to be publishedGoogle Scholar
13. Rodmacq, B., Dos Santos, C.A., J. Magn. Magn. Mater. 109, 298 (1992)Google Scholar
14. Parkin, S.S.P. and Mauri, D., Phys. Rev. B 44, 7131 (1991)Google Scholar
15. Majkrzak, C.F., Kwo, J., Hong, M., Yafet, Y., Gibbs, D., Chien, C.L. and Bohr, J., Advances in Physics 40, 99 (1991)Google Scholar