Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T18:33:57.392Z Has data issue: false hasContentIssue false

Neutron Diffraction Study of Radiation Damage in U3Si at 30°C and 350°C

Published online by Cambridge University Press:  16 February 2011

R. C. Birtcher
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
J. W. Richardson
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
M. H. Mueller
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
Get access

Abstract

We compare damage evolution in U3Si produced by neutron irradiation at 30°C and 350°C and measured by neutron diffraction. Initial studies found that increasing neutron irradiation dose at 30°C results in monotonic expansion of the a-axis and contraction of the c-axis that transforms the crystal structure from tetragonal to cubic [1]. Additional irradiation results in amorphization. Neutron irradiation at 350°C results in little change to the a-axis and expansion of the caxis.The complete alteration in lattice dilatation during irradiation is interpreted as due to modification of surviving defect configurations at the higher temperature. The high temperature lattice dilations can be explained by defect loop formation in the a-b plane. Confinement of lattice strain to the c-axis during irradiation at 350°C may be the mechanism that prevents the total lattice dilatation from exceeding the critical level required for amorphization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Birtcher, R. C., Mueller, M. H. and Richardson, J. W. Jr, (Mater. Res. Soc. Proc. M Boston, Ma. 1991) pp. 579.Google Scholar
2. Hofman, G. L., J. Nucl. Mat. 140, 256 (1986).Google Scholar
3. Birtcher, R. C., Allen, C. W., Rehn, L. E. and Hofman, G. L., J. Nucl. Mater. 152, 73 (1988).Google Scholar
4. Birtcher, R. C., Blewitt, T. H., Kirk, M. A., Scott, T. L., Brown, B. S. and Greenwood, L. R., J. Nucl. Mater. 108 & 109, 3 (1982).Google Scholar
5. Greenwood, L. R., private communication.Google Scholar
6. Parkin, D. M. and Elliott, R. O., Nucl. Inst. Meth. B 16, 193 (1986).Google Scholar
7. Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969).Google Scholar
8. Jorgensen, J. D., Faber, J. Jr, Carpenter, J. M., Crawford, R. K., Hauman, J. R., Hitterman, R. L., Kleb, R., Ostrowski, G. E., Rotella, F. J. and Worlton, T. G., J. Appl. Cryst. 21, 321 (1989).Google Scholar
9. Kimmel, G. and Nadiv, S., J. Nucl. Mater. 54, 299 (1974).Google Scholar
10. Okamoto and Meshii in Science of Advanced Materials, ed. Wiedersich, H. and Meshii, M. (American Society for Metals, Metal Park, OH, 1990) p 33.Google Scholar