Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T22:07:08.503Z Has data issue: false hasContentIssue false

Neodymium and Erbium Implanted Gan

Published online by Cambridge University Press:  10 February 2011

E. Silkowski
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
Y. K. Yeo
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
R. L. Hengehold
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
B. Goldenberg
Affiliation:
Honeywell Technology Center, Bloomington, MN 55420
G. S. Pomrenke
Affiliation:
Advanced Research Projects Agency, Arlington, VA 22203
Get access

Abstract

Strong rare earth (RE) emissions from Nd and Er implanted into MOCVD grown GaN were observed through photoluminescence (PL) with below bandgap excitation from an Ar+laser. Three well resolved manifolds of 4f lines from the crystal-field split 4F3/24I9/2, 4F3/24I11/2, and 4F3/24I13/2 transitions of Nd3+ were observed at low temperature at ˜0.98, ˜1.14, and ˜1.46 μm, respectively. The Er implanted GaN showed both the 4I13/24I15/2 Er3+ transition at ˜1.54 μm and the 4I11/24I15/2 Er3+ transition at ˜1.00 μm. The Er luminescence at ˜1.54 μm and Nd luminescence at ˜1.1 μm persisted to room temperature. Both Er and Nd implanted samples showed increasing RE3+ signal as annealing temperature increased from 700 to 1000 °C. The growth of new 4f crystal-field split-lines in the ˜1.54 μm 4I13/24I15/2 manifold as annealing temperature was increased to 1000 °C suggests multiple Er3+ radiative centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D., and Guillou, Y. Le, Electron. Lett. 25, 718 (1989)Google Scholar
2. Neuhalfen, A. J. and Wessels, B. W., Appl. Phys. Lett. 60, 2657 (1992)Google Scholar
3. Wilson, R. G., Pearton, S. J., Abernathy, C. R., and Zavada, J. M., Appl. Phys. Lett. 66, 2238 (1995)Google Scholar
4. Pearton, S. J., Vartuli, C. B., Zolper, J. C., Yuan, C., and Stall, R. A, Appl. Phys. Lett. 67, 1435 (1995)Google Scholar
5. Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T., and Zavada, J. M., Appl. Phys. Lett. 65, 992 (1994)Google Scholar
6. Qiu, C. H., Leksono, M. W., Pankove, J. I., Torvik, J. T., Feuerstein, R. J., and Namavar, F., Appl. Phys. Lett. 66, 562 (1995)Google Scholar
7. Goldenberg, B., Zook, J. D., and Ulmer, R. J., Appl. Phys. Lett. 62, 381 (1993)Google Scholar
8. Silkowski, E., Yeo, Y. K., Hengehold, R. L., Khan, M. A., Lei, T., Evans, K., and Cemey, C. in Gallium Nitride and Related Materials: The First International Symposium on Gallium Nitride and Related Materials edited by Dupuis, R. D., Edmond, J. A, Ponce, F.A, and Nakamura, S. (Mater. Res. Soc. 395, Pittsburg, PA 1995)Google Scholar
9. PROFILE Code Version 2.1, Implant Sciences Corp., Danvars, M A (1988)Google Scholar
10. Elsaesser, D. W., Yeo, Y. K., Hengehold, R. L., Evans, K. R., and Pedrotti, F. L., J. Appl. Phys. 77, 3919 (1995)Google Scholar
11. Colon, J. E., Elsaesser, D. W., Yeo, Y. K., Hengehold, R. L., and Pomrenke, G. S., Appl. Phys. Lett. 63, 216 (1993)Google Scholar