Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T10:56:16.975Z Has data issue: false hasContentIssue false

Nanostructured ZnO–X Alloys with Tailored Optoelectronic Properties for Solar-energy Technologies

Published online by Cambridge University Press:  07 November 2013

Maofeng Dou
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Clas Persson
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway.
Get access

Abstract

Alloying ZnO with isovalent compounds allows tailoring the material’s optoelectronic properties. In this work, we theoretically analyze the ZnO-based alloys ZnO–X ≡ (ZnO)1−x(X)x where X = GaN and InN, employing a first-principles Green’s function method GW0 based on the density functional approach. Since the alloy compounds are isovalent to ZnO, we find relatively small distortion of the crystalline structure, however, nanocluster structures are expected to be present in the alloy. ZnO–X reveal intriguing optoelectronic properties. Incorporating GaN or InN in ZnO strongly narrows the energy gap. The band gap energy is reduced from Eg = 3.34 eV in intrinsic ZnO to ∼2.17 and ∼1.89 eV in ZnO–X by alloying ZnO with 25% GaN and InN, respectively. Moreover, clustering enhances the impact on the electronic structure, and the gap energy in ZnO–InN is further reduced to 0.7–1.5 eV if the 25% compound contains nanoclusters. The dielectric function ε2(ω) varies weakly in ZnO–GaN with respect to alloy composition, while it varies rather strongly in ZnO–InN. Hence, by properly growing and designing ZnO–X, the alloy can be optimized for a variety of novel integrated optoelectronic nano-systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., Morkoç, H., J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
Vigneshwaran, N., Kumar, S., Kathe, A. A., Varadarajan, P. V.,Nanotechn. 17, 5087 (2006).CrossRefGoogle Scholar
Morin, S. A., F Amos, F., Jin, S., J. Amer. Chem. Soc. Commun. 129, 13776 (2007).CrossRefGoogle Scholar
Klingshirn, C., Phys. Stat. Sol. B 244, 3027 (2007).CrossRefGoogle Scholar
Persson, C., Platzer-Björkman, C., Malmström, J., Törndahl, T., and Edoff, M., Phys. Rev. Lett. 97, 146403 (2006).CrossRefGoogle Scholar
Pan, H. L., Yao, B., Yang, T., Xu, Y., Zhang, B. Y., Liu, W. W., and Shen, D. Z., Appl. Phys. Lett. 97, 142101 (2010).CrossRefGoogle Scholar
Maeda, K. and Teramura, K., Nature 440, 295 (2006).CrossRefGoogle Scholar
Maeda, K., Teramura, K., and Domen, K., J. Phys. Chem. B 109, 20504 (2005).CrossRefGoogle Scholar
Yashima, M., Yamada, H., Maeda, K., Domen, K., Chem. Commun. 46, 2379 (2010).CrossRefGoogle Scholar
Mapa, M., Thushara, K. S., and Gopinath, C. S., Chem. Mater. 21, 2973 (2009).CrossRefGoogle Scholar
Han, W. Q., Liu, Z., Yu, H. G., Appl. Phys. Lett. 96, 183112 (2010).CrossRefGoogle Scholar
Maeda, K., Takata, T., Hara, M., Saito, N., Inoue, Y., Kobayashi, H., Domen, K., J. Am. Chem. Soc. 127, 8286 (2005).CrossRefGoogle Scholar
Hirai, T., Maeda, K., Yoshida, M., Kubota, J., Ikeda, S., Matsumura, M., Domen, K., J. Phys. Chem. C 111, 18853 (2007).CrossRefGoogle Scholar
Yoshida, M., Hirai, T., Maeda, K., Saito, N., Kubota, J., Kobayashi, H., Inoue, Y., and Domen, K., J. Phys. Chem. C 114, 15510 (2010).CrossRefGoogle Scholar
Lee, Y.-C., Lin, T.-Y., Wu, C.-W., Teng, H., Hu, C.-C., Hu, S.-Y., and Yang, M.-D., J. Appl. Phys. 109, 073506 (2011).CrossRefGoogle Scholar
Wang, S. Z. and Wang, L.W., Phys. Rev. Lett. 104, 065501 (2010).CrossRefGoogle Scholar
Li, L., Muckerman, J. T., Hybertsen, M. S., Allen, P. B., Phys Rev. B 83, 134202 (2011).CrossRefGoogle Scholar
Huda, M. N., Yan, Yanfa, and Al-Jassim, M. M., Phys. Rev. B 78, 195204 (2008).CrossRefGoogle Scholar
Mapa, M., Sivaranjani, K., and Gopinath, C. S., Chem. Mater. 22, 565 (2010).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Dou, M. and Persson, C. Phys. Status Solidi A 209, 75 (2012).CrossRefGoogle Scholar
Dou, M., Baldissera, G., and Persson, C., Int. J. Hydrogen Energy (2013); accepted.Google Scholar
Dou, M., Baldissera, G., and Persson, C., J. Cryst. Growth 350, 17 (2012).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Persson, C. and Ferreira da Silva, A., Appl. Phys. Lett. 86, 231912 (2005).CrossRefGoogle Scholar
Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., and Bechstedt, F., Phys. Rev. B 73, 045112 (2006).CrossRefGoogle Scholar
Heltemes, E. C. and Swinney, H.L., J Appl. Phys. 38, 2387e8 (1967).CrossRefGoogle Scholar
Barker, A. S. and Ilegems, M., Phys. Rev. B 7, 743 (1973).CrossRefGoogle Scholar
Inushima, T., Shiraishi, T., Davydov, V.Y., Solid State Commun. 110, 491e5 (1999).CrossRefGoogle Scholar