Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-04T10:18:40.576Z Has data issue: false hasContentIssue false

Nanostructured Materials for Photonics

Published online by Cambridge University Press:  10 February 2011

N. D. Kumar
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York at Buffalo, NY 14260-3000.
G. Ruland
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York at Buffalo, NY 14260-3000.
M. Lal
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York at Buffalo, NY 14260-3000.
J. Bhawalkar
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York at Buffalo, NY 14260-3000.
G. S. He
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York at Buffalo, NY 14260-3000.
P. N. Prasad
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York at Buffalo, NY 14260-3000.
Get access

Abstract

Nanocomposite materials for application in photonics were developed by sol-gel processing and reverse micellar microemulsion techniques. The capability of incorporating many materials with different functional properties in sol-gel processed glass matrices has been explored in making these materials. The large pore volume fraction and the enormous surface area of the sol-gel glasses enables one to introduce many materials in a phase separated fashion, where the phase separation is in the nanometer range. It is possible to introduce an active material on to the pore surface by solution infiltration and subsequent removal of the solvent, then filling the pores with a monomer containing another active material, and polymerizing inside the pores. Using this approach we have developed composite materials for optical power limiting applications at different wavelengths and a tunable solid state dye lasing medium

Optically transparent polyimide:TiO2 composite waveguide materials were prepared by the dispersion of nano-sized TiO2 particles into a polyimide matrix. The particles were produced through reverse micelles using the sol-gel method, and were incorporated into the fluorinated polyimide solution. A polyimide:TiO2 (4 wt %) composite waveguide was produced from the solution. Since the particle size is so small, no noticeable scattering loss was observed. The measured optical propagation loss at 633 nm was 1.4 dB/cm, which is equivalent to that of the pure polyimide. The refractive index was increased from 1.550 to 1.560 by the incorporation of TiO2

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burzynski, R. and Prasad, P. N., Photonics and Nonlinear Optics with Sol-Gel Processed Inorganic Glass:Organic Polymer Composite, Ed. by Klein, L. C., Kluwer Academic, Boston, 1994, Chapter 19.Google Scholar
2. Prasad, P. N., Bright, F. V., Narang, U., Wang, R., Dunbar, R. A., Jordan, J. D. and Gvishi, R., Hybrid Organic-InorganicC omposites, Ed. by Mark, J. E., Lee, C.Y-C. and Bianoni, P. A., ACS symposium series 585, Washington, 1995,Chapter 25Google Scholar
3. Prasad, P. N. and Rhinhardt, B. A., Chem. Mat. 2, 660 (1990).Google Scholar
4. Burland, D. M., Miler, R. D., and Walsh, C. A., Chem. Rev. (1993).Google Scholar
5. Wang, H. L. and Gample, L., Optics Comm. 18, 4 (1976).Google Scholar
6. Avnir, D., Levy, D. and Reisfeld, R., J. Phys. Chem. 88, 5956 (1984).Google Scholar
7. Salin, F., Saux, G. Le, Georges, P., Brun, A., Bagnall, C. and Zarzycki, J., Optics Lett. 14, 785 (1989).Google Scholar
8. Mckiernan, J. M., Yamanaka, S. A., Dunn, B. and Zink, J. I., J. Phys. Chem. 94, 5652 (1990).Google Scholar
9. Braun, S., Rappoport, S., Zusman, R., Avnir, D. and Ottolenghi, M., Mater. Lett. 10, 1 (1990).Google Scholar
10. Narang, U., Bright, F. V. and Prasad, P. N., Appl. Spectrosc. 47, 229 (1993).Google Scholar
11. Gvishi, R. and Reisfeld, R., J. of Non-Crystalline Solids 128, 69 (1991).Google Scholar
12. Li, X., King, T. A. and Pallikari-Viras, F., J Non-Cryst. Solids 170, 243 (1994).Google Scholar
13. Gvishi, R., Reisfeld, R. and Burshtein, Z., J. Sol-Gel Sci. Tech. 4, 49 (1995).Google Scholar
14. He, G. S., Gvishi, R., Prasad, P. N., Reinhardt, B. A., Bhatt, J. C. and Dillard, A. G., Optics Comm., In press, (1995).Google Scholar
15. He, G. S., Gvishi, R., Prasad, P. N., Reinhardt, B. A., Bhatt, J. C. and Dillard, A. G., CLEO 95 Conference, (1995).Google Scholar
16. Gvishi, R., Prasad, P. N., Reinhardt, B. A. and Bhatt, J. C, JSST special issue on “Sol-Gel preparation of Nonlinear Optical Material”, Submitted for publication (May 1995).Google Scholar
17. Gvishi, R., Bhalwakar, J., Kumar, N. D., Ruland, G., Narang, U. and Prasad, P. N., Chem. of Mat. 7, 2199 (1995).Google Scholar
18. Prasad, P. N., Gvishi, R., Ruland, G., Kumar, D. N., Bhalwakar, J. and Narang, U., SPIEProc. 2530, 128 (1995).Google Scholar
19. Ruland, G., Gvishi, R., and Prasad, P. N., J. Am. Chem. Soc., In Press, (1996).Google Scholar
20. Zhao, C. F., He, G. S., Bhawalkar, J. D., Park, C. K. and Prasad, P. N., Chem. Mat. In press (August 1995).Google Scholar
21. R, Gvishi. Ph.D. Thesis, The Hebrew University of Jerusalem, Jrusalem, Israel,(1993).Google Scholar
22. Phillip, G., Schmidt, H., J. Non-Cryst. Solids 283, 63 (1984).Google Scholar
23. Li, C., Tseng, J. Y., Morita, K., Lecher, C., Hu, Y., Mackenzie, J., Proc. SPIE 1758,410 (1992).Google Scholar
24. Yoshida, M., Prasad, P. N.,Chem. Mater. (1995).Google Scholar
25. Imai, Y., J. Macromol. Sci. A 28, 1115 (1991).Google Scholar
26. Nandi, M., Conklin, J. A., Lawrence, S., Sen, A., Chem. Mater. 3, 201 (1991).Google Scholar
27. Kioul, A., Mascia, L. J., Non-Cryst. Solids 175, 169 (1994).Google Scholar
28. Swayambunathan, V., Hayes, D., Schmidt, K. H., Liao, Y. X., Meisel, D., J. Am. Chem. Soc. 112, 3831 (1990).Google Scholar
29. Wang, Y., Suna, A., McHugh, J., J. Chem. Phys. 92, 6927 (1990).Google Scholar
30. Wang, Y., Mahler, W., Optics Comm. 61, 233 (1987).Google Scholar
31. Lisiecki, I., Bjorling, M., Motte, L., Ninham, B., Pileni, M. P., Langmuir 11, 2385 (1995).Google Scholar
32. Kortan, A. R., Hull, R., Opila, R. L., Bawendi, M. G., Steigerwald, M. L., Carroll, P. J., Brus, L. E., J. Am. Chem. Soc. 112, 1327 (1990).Google Scholar
33. Koper, G. J. M., Sager, W. F. C., Smeets, J., Bedeaux, D., J. Phys. Chem. 99, 13291 (1995).Google Scholar
34. Petit, C., Lixon, P., Pileni, M. P., J. Phys. Chem. 94, 1598 (1990).Google Scholar
35. Pope, E. J. A., Asami, M. and Mackenzie, J. D., J. Mater. Res. 4, 1018 (1989).Google Scholar
36. Hench, L. L. and Nogues, J. L., Sol-Gel Optics: Processing and Applications, Ed. by Klein, L. C., Kluwer Academic, Boston, 1993, Chapter 3.Google Scholar
37. Klein, L. C., Sol-Gel Optics: Processing and Applications, Ed. by Klein, L. C. Kluwer Academic, Boston, 1993, Chapter 10.Google Scholar
38. Gvishi, R., Ruland, G. and Prasad, P. N., Opt. Comm., In Press, (1996).Google Scholar
39. Tutt, L.W. and Bogges, T.F., Prog. Quant.Electr., 17, 299 (1993).Google Scholar
40. Catalhn, J. and Elguero, J, J Am. Chem. Soc. 115, 9249 (1993).Google Scholar
41. Eftink, M. R., Topics in Fluorescence Spectroscopy Vol.2, Ed. by Lakowicz, J. R., Plenum Press, NewYork, 1991 Ch. 2.Google Scholar
42. Drexhage, K. H., Dye Lasers, Ed. by Schäfer, F. P. Springer-Verlag, Berlin, 1990, Chapter 5.Google Scholar