Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T23:29:34.052Z Has data issue: false hasContentIssue false

Nano-scale Interfacial Reactions of SrRuO3 Thin Film on Si (100) Substrate

Published online by Cambridge University Press:  21 March 2011

Sang Ho Oh
Affiliation:
Center for Advanced Aerospace Materials (CAMM), Dept. of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
Chan-Gyung Park
Affiliation:
Center for Advanced Aerospace Materials (CAMM), Dept. of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
Get access

Abstract

Interfacial reactions between SrRuO3 films and Si substrate were investigated by using field emission-transmission electron microscopy (FE-TEM). The compositional and structural variations across the interface were analyzed by using energy dispersive X-ray spectroscopy (EDS) and diffraction with an electron probe in 0.5 nm in diameter. Two constituent binary oxides of SrRuO3, i.e. SrO and RuO2, were found to react differently on Si surface: 1) SrO in stable contact with Si, and 2) RuO2 in unstable contact. The reduction of SrRuO3 to elemental Ru by Si is believed to be most favorable candidate for the reaction leading to the unstable contact of SrRuO3 on Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hubbard, K. J. and Schlom, D. G., J. Mat. Res. 11, 2757 (1996).Google Scholar
2. Izuha, M., Abe, K., Koike, M., Takeno, S., Fukushima, N., Appl. Phys. Lett. 70, 1405 (1997).Google Scholar
3. Watanabe, K., Ami, M., Tanaka, M., Mat. Res. Bull. 32, 83 (1997).Google Scholar
4. Dai, Z. R., Son, S. Y., Kim, B. S., Choi, D. K., Ohuchi, F. S., Mat. Res. Bull. 34, 933 (1999).Google Scholar
5. Hou, S. Y., Kwo, J., Watts, R. K., Cheng, J.-Y., Fork, D. K., Appl. Phys. Lett. 67, 1387 (1995).Google Scholar
6. Jia, Q. X., Kung, H. H., Wu, X. D., Thin Solid Films 299, 115 (1997).Google Scholar
7. Roldán, J., Sánchez, F., Trtik, V., Guerrero, C., Benitez, F., Ferrater, C., Varela, M.. Appl. Surf. Sci. 154–155, 159 (2000).Google Scholar
8. Oh, S. H. and Park, C. G., J. Mat. Res. 16, 1998 (2001).Google Scholar
9. Pretorious, R., Harris, J. M., and Nicolet, M-A., J. Appl. Phys. 81, 656 (1997).Google Scholar
10. Gasser, S. M., Kolawa, E., Nicolet, M.-A., J. Appl. Phys. 86, 1974 (1999).Google Scholar
11. Mallika, C., Sreedharan, O. M., J. Alloy. Comp. 191, 219 (1993).Google Scholar
12. Kado, Y. and Arita, Y., J. Appl. Phys. 61, 2398 (1987).Google Scholar
13. Samsonov, G. V., The Oxide Handbook, 2th ed. (IFI/Plenum, NewYork, 1982), pp.46.Google Scholar