Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T10:57:37.328Z Has data issue: false hasContentIssue false

Nanoscale Features Grown by MBE on Nonplanar Patterned Si Substrates

Published online by Cambridge University Press:  15 February 2011

Karl D. Hobart
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
Fritz J. Kub
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
Henry F. Gray
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
Mark E. Twigg
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
Doewon Park
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
Phillip E. Thompson
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Si growth by molecular beam epitaxy on nonplanar patterned Si substrates is studied as a function of growth parameters. The substrates consist of a truncated pyramid template with {111} sides and (100) tops formed by anisotropic etching of Si(100). For growth temperatures ≤ 550°C no qualitative changes in the morphology of the template are observed. At growth temperatures between 650–700°C {113} facets begin to form on the (100) surface and reduce the lateral dimensions of the (100) facet to < 20 nm. At high temperatures (∼800°C) {113} facets remain stable and {111} facets no longer exist. The small (100) mesa formed at medium temperatures by facet reduction is exploited through the growth of Si/Si 1-xGex multiple quantum wells leading to low-dimensional structures. Observations are quantified by scanning electron and transmission electron microscopies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, Y.S., Wilkinson, C.D.W., Torres, C.M. Sotomayer, Smith, D.W., Whall, T.E., and Parker, E.H.C., Appl. Phys. Lett. 63, 497 (1993).Google Scholar
2. Usami, N., Mine, T., Fukatsu, S., and Shiraki, Y., Appl. Phys. Lett. 64, 1126 (1994).Google Scholar
3. Apetz, R., Vescan, L., Hartman, A., Dieker, C., and Luth, H., Appl. Phys. Lett. 64,445 (1995).Google Scholar
4. Gossner, H., Baumgartner, H., Hammerl, E., Wittmann, F., Eisele, I., Heinzel, T., and Lorenz, H., Jpn. J. Appl. Phys. 33, 2268 (1994).Google Scholar
5. Brunner, J., Tupp, T.S., Gossner, H., Ritter, R., Eisele, I., and Abstreiter, G., Appl. Phys. Lett. 64, 994 (1994).Google Scholar
6. Bean, K.E., IEEE Trans. Elec. Dev. ED–25, 1185 (1978).Google Scholar
7. Thompson, P. E, Twigg, M.E., Godbey, D.J., and Hobart, K.D., J. Vac. Sci. Technol. B 11, 1077 (1993).Google Scholar
8. Booker, G.R. and Joyce, B.A., Philos. Mag. 14, 301 (1969).Google Scholar
9. Yang, Y.-N. and Williams, E.D., J. Vac. Sci. Technol. A 8, 2481 (1990).Google Scholar
10. Hirayama, H., Hiroi, M., and Ide, T., Phys. Rev. B 48, 17331 (1993).Google Scholar
11. Eaglesham, D.J., White, A.E., Feldman, L.C., Moriya, N., and Jacobson, D.C., Phys. Rev. Lett. 70, 1643 (1993).Google Scholar
12. Oshiyama, A., Phys. Rev. Lett. 74, 130 (1995).Google Scholar
13. Chadi, D.J., Phys. Rev. Lett. 59, 1691 (1987).Google Scholar
14. Madhukar, A., Rajkumer, K.C. and Chen, P., Appl. Phys. Lett. 62, 1547 (1993).Google Scholar