Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-21T13:51:47.332Z Has data issue: false hasContentIssue false

Nano-meter scale plasticity in KBr studied by nanoindenter and force microscopy

Published online by Cambridge University Press:  31 January 2011

Praveena Manimunda
Affiliation:
praveena@platinum.materials.iisc.ernet.in, IISc, Bangalore, India
Tobin Filleter
Affiliation:
filleter@physics.mcgill.ca, McGill University, Montreal, Canada
Philip Egberts
Affiliation:
philip.egberts@inm-gmbh.de, INM, Saarbrücken, Germany
Vikram Jayaram
Affiliation:
qjayaram@materials.iisc.ernet.in, IISc, Bangalore, India
Sanjay Kumar Biswas
Affiliation:
skbis@mecheng.iisc.ernet.in, IISc, Bangalore, India
Roland Bennewitz
Affiliation:
roland.bennewitz@inm-gmbh.de, McGill University, Montreal, Canada
Get access

Abstract

The early stages of plasticity in KBr single crystals have been studied by means of nanometer-scale indentation in complementary experiments using both a nanoindenter and an atomic force microscope. Nanoindentation experiments precisely correlate indentation depth and forces, while force microscopy provides high-resolution force measurements and images of the surface revealing dislocation activity. The two methods provide very similar results for the onset of plasticity in KBr. Upon loading we observe yield of the surface in atomic layer units which we attribute to the nucleation of single dislocations. Unloading is accompanied by plastic recovery as evident from a non-linear force distance unloading curve and delayed discrete plasticity events.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gaillard, Y., Tromas, C., J. Woirgard: Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in MgO, Acta Materialia 54 (2006) 14091417 10.1016/j.actamat.2005.11.013Google Scholar
2. Gerberich, W.W., Mook, W.M., Cordill, M.J., Carter, C.B., Perrey, C.R., Heberlein, J.V., Girshick, S.L.: Reverse plasticity in single crystal silicon nanospheres, International Journal of Plasticity 21 (2005) 23912405 10.1016/j.ijplas.2005.03.001Google Scholar
3. Cordill, M.J., Chambers, M.D., Lund, M.S., Hallman, D.M., Perrey, C.R., Carter, C.B., Bapat, A., Kortshagen, U., Gerberich, W.W.: Plasticity responses in ultra-small confined cubes and films, Acta Materialia 54 (2006) 45154523 10.1016/j.actamat.2006.05.037Google Scholar
4. Pethica, J.B., Hutching, R.S., and Oliver, W.C.: Phil. Mag. A 48 (1983) 593 10.1080/01418618308234914Google Scholar
5. Fraxedas, J., Garcia-Manyes, S., Gorostiza, P., and Sanz, F.: Nanoindentation: Toward the sensing of atomic interactions, PNAS 99 (2002) 52285232 10.1073/pnas.042106699Google Scholar
6. Cross, G.L.W., Schirmeisen, A., Grütter, P., and Dürig, U.T.: Plasticity, healing and shakedown in sharp-asperity nanoindentation, Nature Material 5 (2006) 370 10.1038/nmat1632Google Scholar
7. Filleter, T., Maier, S., Bennewitz, R.: Atomic-scale yield and dislocation nucleation in KBr, Phys. Rev. B 73 (2006) 155433 10.1103/PhysRevB.73.155433Google Scholar
8. Filleter, T., Bennewitz, R.: Nanometre-scale Plasticity of Cu(100), Nanotechnology 18 (2007) 044004 10.1088/0957-4484/18/4/044004Google Scholar
9. Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation, J. Mater. Res. 19, 3 (2004)10.1557/jmr.2004.19.1.3Google Scholar
10. Gnecco, E., Bennewitz, R., and Meyer, E.: Abrasive Wear on the Atomic Scale, Phys. Rev. Lett. 88 (2002) 215501 10.1103/PhysRevLett.88.215501Google Scholar
11. Carrasco, E., Fuente, O. R. de la, Gonzalez, M., and Rojo, J.: Dislocation cross slip and formation of terraces around nanoindentations in Au(001), Phys. Rev. B 68, 180102 (2003).10.1103/PhysRevB.68.180102Google Scholar
12. Egberts, P., Filleter, T., and Bennewitz, R.: Kelvin Probe Force Microscopy of charged indentation-induced dislocation structures in KBr, Nanotechnology (June 2009)10.1088/0957-4484/20/26/264005Google Scholar
13. Skrotzki, W., Frommeyer, G., Haasen, P.: Plasticity of Polycrystalline Ionic Solids, phys. stat. sol. (a) 66, 219 (1981)10.1002/pssa.2210660125Google Scholar
14. Gaillard, Y., Tromas, C. and Woirgard, J.: Pop-in phenomenon in MgO and LiF: observation of dislocation structures, Phil. Mag. Lett. 83, 553 (2003)Google Scholar
15. Bassett, G.A.: The plasticity of alkali halide crystals, Acta Met. 7, 754 (1959)10.1016/0001-6160(59)90186-5Google Scholar
16. Appel, F., Messerschmidt, U., Schmidt, V., Klyavin, O.V., Nikiforov, A.V.: Slip Structures and Cross-slip of Screw Dislocations during the Deformation of NaC1 Single Crystals at Low Temperatures, Materials Science and Engineering, 56 (1982) 211 10.1016/0025-5416(82)90096-9Google Scholar
17. Oele, W. F., Kerssemakers, J. W. J., and Hosson, J. Th. M. De: In situ generation and atomic scale imaging of slip traces with atomic force microscopy, Rev. Sci. Instr. 68, 4492 (1997)10.1063/1.1148419Google Scholar
18. Tromas, C., Girard, J.C. and Woirgard, J., Study by atomic force microscopy of elementary deformation mechanisms involved in low load indentations in MgO crystals: Phil. Mag. A 80, 2325 (2000)10.1080/01418610008216475Google Scholar