Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-13T07:27:30.635Z Has data issue: false hasContentIssue false

Nanoindentation on Contamination-Free gold Films Using the Atomic Force Microscope

Published online by Cambridge University Press:  21 February 2011

D. M. Schaefer
Affiliation:
Purdue University, Department of Physics, W. Lafayette IN 47907
R. Reifenberger
Affiliation:
Purdue University, Department of Physics, W. Lafayette IN 47907
Get access

Abstract

Nanoindentation experiments on high quality Au films were performed in vacuum using an atomic force microscope. In these experiments, elastic behavior was observed until loading forces greater than ∼ 20 nN were applied. For loads larger than this, systematic changes in the jump-to-contact, loading/unloading and lift-off regions of the data occur. These observations are consistent with a transition from elastic to inelastic behavior during indentation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Burnham, N. A., Colton, R. J., and Pollock, H. M., Nanotechnology, 4, 64 (1993).CrossRefGoogle Scholar
[2] Schaefer, D.M., Andres, R.P., and Reifenberger, R. (in preparation) (1993).Google Scholar
[3] Burnham, N.A. and Colton, R.J., J. Vac. Sci. Technol., A7, 2906 (1989).CrossRefGoogle Scholar
[4] Schaefer, D.M., Patil, A., Andres, R.P., and Reifenberger, R., Appl. Phys. Lett., 63, 1492 (1993).CrossRefGoogle Scholar
[5] Mizes, H.A., Ott, M.L., Loh, K.G., and Miller, R.J.D. (submitted to J. Adhes. Sci. Technol., 1994).Google Scholar
[6] Schaefer, D.M., Carpenter, M., Reifenberger, R., DeMejo, L.P., and Rimai, D.S. (submitted to J. Adhes. Sci. Technol., 1994).Google Scholar
[7] Derose, J.A., Thundat, T., Nagahara, L.A., and Lindsay, S.M., Surf. Sci., 256, 102 (1991).CrossRefGoogle Scholar
[8] Hwang, J. and Dubson, M.A., J. Appl. Phys., 72, 1852 (1992).CrossRefGoogle Scholar
[9] Schaefer, D.M., Ramachandra, A., Andres, R.P., and Reifenberger, R., Z. Phys.D, 26, 249 (1993).CrossRefGoogle Scholar
[10] Available from Park Scientific Instruments, Sunnyvale CA 94089.Google Scholar
[11] Meyer, G. and Amer, N.M., Appl. Phys. Let., 53, 1045 (1988).CrossRefGoogle Scholar
[12] Meyer, G. and Amer, N.M., Appl. Phys. Let., 53, 2400 (1988).CrossRefGoogle Scholar
[13] Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., Hansma, P.K., Longmire, M., and Gurley, J., J. Appl. Phys., 65, 164 (1989).CrossRefGoogle Scholar
[14] Piner, R. and Reifenberger, R., Rev. Sci. Instrum., 60, 3123 (1989).CrossRefGoogle Scholar
[15] Krim, J., private communication.Google Scholar
[16] Israelachvili, J.N., Intermolecular and Surface Forces (Academic Press, New York, 1985).Google Scholar
[17] Johnson, K.L., Kendall, K., and Roberts, A.D., Proc. R. Soc. London, A324, 301 (1971).Google Scholar