Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T01:27:24.296Z Has data issue: false hasContentIssue false

Nanocrystalline Diamond as a Dielectric for SOD Applications

Published online by Cambridge University Press:  01 February 2011

Mose Bevilacqua
Affiliation:
r.jackman@ucl.ac.uk, University College London, London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
Niall Tumilty
Affiliation:
r.jackman@ucl.ac.uk, University College London, London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
Aysha Chaudhary
Affiliation:
r.jackman@ucl.ac.uk, University College London, London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
Haitao Ye
Affiliation:
r.jackman@ucl.ac.uk, University College London, London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
James E Butler
Affiliation:
r.jackman@ucl.ac.uk, Naval research laboratories, Gas/Surface Dynamics Section, 4555 Overlook Ave. St., Washington, WA, DC 20375, United States
Richard B Jackman
Affiliation:
r.jackman@ucl.ac.uk, University College London, London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
Get access

Abstract

Nanocrystalline diamond (NCD) has been grown on oxide coated silicon wafers by microwave plasma assisted chemical vapour deposition using a novel seeding technique followed by optimised growth conditions, and leads to a highly-dense form of this material with grain sizes around 100nm for films approximately 1.5 microns thick. The electrical properties of these films have been investigated using Impedance Spectroscopy, which enables the contributions from sources characterised by differing capacitances, such as grain boundaries and grain interiors, to be isolated. After an initial acid clean the electrical properties of the film are not stable, and both grain boundaries and grains themselves contribute to the frequency dependant impedance values recorded. However, following mild oxidation grain boundary conduction is completely removed and the films become highly resistive (>1013 ohm/sq). This is most unusual, as conduction through NCD material is more normally dominated by grain boundary effects. Interestingly, the AC properties of these films are also excellent with a dielectric loss value (tan δ) as low as 0.002 for frequencies up to 10MHz. The dielectric properties of these NCD films are therefore as good as high quality free-standing (large grain) polycrystalline diamond films, and not too dissimilar to single crystal diamond, and are therefore ideally suited to future ‘silicon-on-diamond’ applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. “Diamond Electronics–Fundamentals to Applications” MRS Symposium Proceedings, Vol. 956 (2007) Eds. Bergonzo, P, Gat, R, Jackman, RB and Nebel, CE Google Scholar
2. Edholm, B, Söderbärg, A, Olsson, J and Johansson, E Jpn. J. Appl. Phys., 34, 4706 (1995)10.1143/JJAP.34.4706Google Scholar
3. Lang, AR, Makepeace, APW, Alexander, WB, McCormick, T, Pehrsson, PE and Butler, JE J. Cryst. Growth 200, 446 (1999)Google Scholar
4. Ayres, VM, McCormick, T, Alexander, WB, Vestyck, DJ, Butler, JE and Spiberg, P Diam. & Relat. Mater., 7, 789 (1998)Google Scholar
5. Zhou, D., Krauss, A. R., Qin, L. C., McCauley, T. G., Gruen, D. M., Corrigan, T. D., Chang, R. P. H. and Gnaser, H. J. Appl. Phys., 82, 4546 (1997)Google Scholar
6. Profitt, SS, Probert, SJ, Whitfield, MD, Foord, JS and Jackman, RB Diam. & Relat. Mat., 8, 768 (1999)Google Scholar
7. Ye, H, Sun, CQ, Huang, H and Hing, P Appl. Phys. Letts., 78, 1826 (2001)Google Scholar
8. Williams, OA and Nesladek, M Phys. Stat. Sol., A203, 3375 (2006)Google Scholar
9. Jiao, S, Sumant, A, MA, MA Kirk, Gruen, DM, Krauss, AR and Auciello, O J. Appl. Phys., 90, 118 (2001)Google Scholar
10. Philip, J, Hess, P, Feygelson, T, Butler, JE, Chattopadhyay, S, Chen, KH and Chen, LC J. Appl. Phys., 93, 2164 (2003)10.1063/1.1537465Google Scholar
11. Wang, J., Butler, J.E., Feygelson, T., and Nguyen, C. T.-C., 17th Int. IEEE Micro Electro Mechanical Systems Conf., Maastricht, The Netherlands, Jan. 25-29, 2004, pp.641644 Google Scholar
12. Baldwin, J. W., Zalalutdinov, M. K., Feygelson, T. et al. Diamond and Related Materials 15, 2061 (2006)Google Scholar
13. Ye, H, Hing, P and Jackman, RB J. Appl. Phys., 94, 7878 (2003)Google Scholar
14. Baral, B, Chan, SSM and Jackman, RB J. Vac. Sci. & Technol., A14, 2303 (1996)Google Scholar
15. Ye, H, Gaudin, O, Jackman, RB, Muret, P and Gheerart, E Phys. Stat. Sol. A199, 92 (2003)Google Scholar
16. Ye, H, Gaudin, O and Jackman, RB J. Mat. Sci. & Tech., 21, 879 (2005)Google Scholar
17. Ye, H, Yan, HX and Jackman, RB Semi. Sci. & Technol., 20, 296 (2005)Google Scholar
18. S Curat, S, Ye, H, Gaudin, O, Koizumi, S and Jackman, RB J. Appl. Phys., 98, 073701 (2005)10.1063/1.2058183Google Scholar
19. Conte, G, Rossi, MC, Spaziani, F and Arcangeli, R Diam. & Relat. Mat., 14, 570 (2005)10.1016/j.diamond.2005.01.011Google Scholar
20. Macdonald, J. R., “Impedance Spectroscopy” (Wiley, New York, 1987), Chapter 4.Google Scholar
21. Hench, L. L. and West, J. K., Principles of Electronic Ceramics (Wiley, New York, 1989), Chapter 5.Google Scholar
22. Looi, HJ, Pang, LYS, Molley, AB, Jones, F, Foord, JS and Jackman, RB Diam. & Relat. Mat., 7, 550 (1998)Google Scholar
23. Matel, BF, Stammler, M, Ristein, J and Ley, L Diam. & Relat. Mater., 10, 429 (2001)10.1016/S0925-9635(00)00601-4Google Scholar
24. Chua, LH, Jackman, RB, Foord, JS, Chalker, PR, Johnston, C, Romani, S J. Vac. Sci. & Technol., A12, 3033 (1994)Google Scholar
25. Nakamura, J and Ito, T Appl. Surf. Sci., 244, 301 (2005)Google Scholar
26. Maclear, RD, Butler, JE, Connell, SH, Doyle, BP, Machi, IZ, Rebuli, DB, Sellschop, JPF and Sideras-Haddad, E Diam. & Relat. Mater., 8, 1615 (1999)10.1016/S0925-9635(99)00061-8Google Scholar
27. Brandon, JR, Coe, SE, Sussmann, RS, Sakamoto, K, Sporl, R, Heidinger, R and Hanks, S Fus. Eng. & Des., 53, 553 (2001)10.1016/S0920-3796(00)00533-0Google Scholar
28. Ibarra, A, Gonzalez, M, Vila, R and Molla, J Diam. & Relat. Mater., 6, 856 (1997)Google Scholar
29. Lu, FX, Zhang, HD, Tong, YM, Yang, JX, Li, CM, Chen, GC and Tang, WZ Diam. & Relat. Mater., 13, 1714 (2004)10.1016/j.diamond.2004.02.011Google Scholar
30. Heidger, S, Frie-Carr, S, Jordan, B and Wu, R IEEE 247 (1998)Google Scholar