Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T16:00:35.812Z Has data issue: false hasContentIssue false

Multifunctional Materials: 2D constrained Electronically Conductive Polymer into LDH Matrix

Published online by Cambridge University Press:  01 February 2011

El Mostafa Moujahid
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR 6002, Université Blaise Pascal, 63177 Aubière cédex. Email: fleroux@chimtp.univ-bpclermont.fr
Marc Dubois
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR 6002, Université Blaise Pascal, 63177 Aubière cédex. Email: fleroux@chimtp.univ-bpclermont.fr
Jean-Pierre Besse
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR 6002, Université Blaise Pascal, 63177 Aubière cédex. Email: fleroux@chimtp.univ-bpclermont.fr
Fabrice Leroux
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR 6002, Université Blaise Pascal, 63177 Aubière cédex. Email: fleroux@chimtp.univ-bpclermont.fr
Get access

Abstract

O-aminobenzenesulfonic acid is incorporated between the sheets of Cu2Cr(OH)6Cl. H2O hydrotalcite-type materials. After heating, a narrow ESR signal characterisitic of conductive polymer behavior is observed for the hybrid phase. The reaction of polymerization fails in absence of the confinement supplied by the LDH host structure and of air atmosphere. The nanocomposite presents an electrochemical behavior in agreement with the presence of large polyanilinesulfonate (PAniS) units, whereas the electropolymerization gives rise first to the formation of dimers. Spin density is found to be greater with the electropolymerization after few cycles than after the heat treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kanatzidis, M. G. Wu, C.-G. Marcy, H. O. DeGroot, D. C. Kannewurf, C. R. Chem. Mater. 2, 222 (1990).Google Scholar
2. Kerr, T. A. Wu, H. Nazar, L. F. Chem. Mater. 8, 2005 (1996)Google Scholar
3. Liu, P. Gong, K. Carbon 37, 701 (1999)Google Scholar
4. Wang, L. Brazis, P. Rocci, M. Kannewurf, C. R. Kanatzidis, M. G. Chem. Mater. 10, 3298 (1998)Google Scholar
5. Challier, T. Slade, R. C. T. J. Mater. Chem. 4, 367 (1994)Google Scholar
6. Isupov, V. P, Chupakhina, L. E. Ozerova, M. A. Kostrovsky, V. G. Poluboyarov, V.A., Solid State Ionics 141-142, 231 (2001)Google Scholar
7. Roussel, H. Briois, V. Elkaim, E. Roy, A. de, Besse, J.-P. J. Phys. Chem. B 104, 5915 (2000).Google Scholar
8. Chen, S.-A. Hwang, G.-W. Polymer 38, 3333 (1997)Google Scholar
9. Hofmeister, W. Platen, H. V. Crystallogr. Rev. 3, 3 (1992)Google Scholar
10. Wu, C. G., DeGroot, D. C., Marcy, H. O., Schindler, J. L., Kannewurf, C. R., Bakas, T., Papaefthymiou, V. Hirpo, W. Yesinowski, J. P. Liu, Y.-J., Kanatzidis, M.G., J. Am. Chem. Soc. 117, 9229 (1995)Google Scholar
11. Roy, A. De, Forano, C. Malki, K. El, Besse, J.-P. Synthesis of Microporous Materials, ed. Occelli, L. and Robson, H. Van Nostrand, Reinhold 2, 108 (1992)Google Scholar
12. Rey, S. Mérida-Robles, J., Han, K.-S. Guerlou-Demourgues, L., Delmas, C., Duguet, E., Polym. Int. 48, 277 (1999)Google Scholar
13. Whilton, N. T. Vickers, P. J. Mann, S. J. Mater. Chem. 7, 1623 (1997)Google Scholar
14. Uma, S. Gopalakrishnan, J. Mat. Sci. Eng. B 34, 175 (1995)Google Scholar
15. Feher, G. Kip, A. F. Phys. Rev. B 98, 337 (1955)Google Scholar
16. Chan, H.S.O.; Neuendorf, A.J.; Ng, S.-C.; Wong, P.M.L.; Young, D.J. Chem. Com. 1327 (1998).Google Scholar
17. Huang, W.-S. Humphrey, B. D. and MacDiarmid, A. G. J. Chem. Soc. Faraday Trans. 82, 2385 (1986)Google Scholar
18. Phani, K.L. N. Pitchumani, S. and Ravichandran, S. Langmuir 9, 2455 (1993)Google Scholar
19. Zhuang, L. Zhou, Q. and Lu, J. J. Electroanal. Chem. 89, 17 (1997)Google Scholar