Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-21T18:41:29.835Z Has data issue: false hasContentIssue false

Morphotropic Phase Boundary in the Nanocrystalline PbZrxTi1-xO3 System

Published online by Cambridge University Press:  15 February 2011

R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00931 –3343
J. F. Meng
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00931 –3343
Get access

Abstract

Micro Raman spectra for PbZrxTi1-xO3 (PZT) with a grain size of 60 nm have been recorded. The results show that the lowest E(TO) phonon mode of PbTiO3 (soft mode) displays a decrease in frequency and increase in linewidth with increasing Zr concentration. A discontinuous behavior of the phonon energy of the soft mode occurs at x=0.4 and it can be attributed to a phase transformation from the tetragonal ferroelectric to rhombohedral ferroelectric phase in PZT. The coupling between the soft mode and an additional impurity mode, has been observed, which plays an important role in the phase transformation. A lowest phonon mode at 10 cm−1 is detected and it is found to exhibit an increase in intensity for x above 0.2. The grain size dependence of the mode seems to be associated with the effect of grain size on the microstructure in PZT. The mechanism of grain size - induced new morphotropic phase boundary, which is lower than that of the corresponding bulk materials, is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

On leave from Department of Physics, Henan University, Kaifeng, P. R. China

References

REFERENCE

1.Paz de Araujo, C. A. and Taylor, G. W., Ferroelectrics, 116, 215(1991).Google Scholar
2.Scott, J. F., Pazde Araujo, C. A., McMillan, L. D., Yoshimori, H., Wanatabe, H., Mihara, T., Azuma, M., Ueda, T., Ueda, D. and Kano, G., Ferroelectrics, 133, 47 (1992).Google Scholar
3.Scott, J. F. and Paz de Araujo, C. A., Science, 246, 1400 (1989).Google Scholar
4.Jaffe, B., Roth, R. S. and Marzullo, S., J. Appl. Phys. 25, 809 (1954).Google Scholar
5.Jaffe, B., Roth, R. S. and Marzullo, S., J. Res. Nat. Bur. Standards, 55, 239 (1955).Google Scholar
6.Newnham, R. E., Rep. Progr. Phys. 52, 123 (1989).Google Scholar
7.Jaffe, B., Cook, W. R. and Jaffe, H., Piezoelectric Ceramics, Academie Press, London, 1971, pp.136.Google Scholar
8.Benguigui, L., Solid State Commun. 19, 979 (1976).Google Scholar
9.Kakfgawa, K., Mohri, J., Takahashi, K., Yamamura, H. and Shirasaki, S., Bull. Chem. Soc. Japan, 5, 717 (1976).Google Scholar
10.Multani, M. S., Gokarn, S. G., Vijyaraghavan, R. and Palkar, V. R., Ferroelectrics, 37, 652 (1981).Google Scholar
11.Nakamura, T., Bull. Ceram. Soc. Japan, 14, 894 (1979).Google Scholar
12.Sawguchi, E., J. Phys. Soc. Jpn. 8, 615 (1953).Google Scholar
13.Turik, A. V., Kupriyamov, m. F., Sidorenk, E. N. and Zaitsev, S. M., ZH. Tekh. Fiz. 50, 2146(1980) [Sov. Phys. Tech. Phys. 25,1251 (1980)].Google Scholar
14.Gr Lucuta, P., Constantinesan, F. L. and Barb, D., J. Am. Ceram. Soc. 68, 533 (1985).Google Scholar
15.Ari-Gur, P. and Benguigui, L., Solid State Commun. 15, 1077 (1978).Google Scholar
16.Hanh, Lu, Uchino, K. and Nomura, S., Jpn. J. Appl. Phys. 17, 637 (1978).Google Scholar
17.Fukuhara, M., Bhalla, A. S. and Newnham, R. E., Phys. Stat. Sol.(a), 122, 677 (1990).Google Scholar
18.Cao, Wenwu and Eric Cross, L., 47, 4825(1993).Google Scholar
19.Burns, G. and Scott, B. A., Phys. Rev. Lett. 25, 1191 (1970).Google Scholar
20.Meng, J. F., Zou, G. T., Cui, Q. L., Zhao, Y. N., Zhu, Z. Q., J. Phys.: condense matter 6, 6543(1994).Google Scholar
21.Bauerle, D., Yacoby, Y. and Richter, W., Solid State Commun. 14, 1137 (1974).Google Scholar
22.Merlin, R., Sanjurjo, J. A. and Pinczuk, A., Solid State Commun. 16, 931 (1975).Google Scholar
23.Pinczuk, A., Taylor, W., Burstein, E. and Lefkowitz, L., Solid State Commun. 5, 429 (1967).Google Scholar